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DISCLAIMER

The views and opinions expressed in this report are those of the

Principal Investigator and his collaborator, Mr. Stewart Addington, and are

not necessarily the views and opinions of NASA, in general, or the Precision

Pointing Systems Branch of Marshall Space Flight Center, in particular.



OVERVIEW OF THIS REPORT

This report describes a new methodology for designing a disturbance-

adaptive, precision pointing controller for the Hubble Space Telescope

(FIST). The proposed new controller can maintain a consistent high-quality

of pointing stability in the face of persistent, randomly triggered, "flapping" of

the two large flexible solar arrays attached to either side of FIST. Similar

HST unknown, unmeasurable "disturbances" associated with deflections of

other flex-body appendages (long, slender antenna booms, etc.) can also be

accommodated by the same pointing controller.

A noteworthy feature of this new disturbance-adaptive pointing

controller is that the structure of the controller algorithm is all linear, has all

constant coefficients, and is relatively low-order, thus enhancing the

controller's reliability and implementation attributes.

The effectiveness of the proposed new precision pointing control

methodology is demonstrated in this report by a detailed design, and closed-

loop simulation testing, of one such pointing controller for a planar-motion

(single-axis), "exact" non-linear model of HST. The simulation results show

a high-degree of pointing stability in the face of persistent flex-body

"flapping" motions of the simulated solar arrays. A novel feature of the

proposed controller is its dual-mode capability. In particular, the controller

has the capability of switching into a special non-pointing control mode in

which the pointing control actions "sway" the telescope's main-body in a

series of back-and-forth motions that are automatically timed and orchestrated

to induce "active damping" (damping augmentation) of the flapping solar

arrays. This action results in a significant and rapid reduction of the solar

array oscillations.



L,

The rationale, general design procedure, and worked (single-axis)

example for the proposed new dual-mode precision pointing controller is

presented in Chapter 1 of this Report. Details of the derivation of the "exact,"

non-linear HST model (planar-motion) and the associated model equations

are presented in the various Appendices of Chapter 1, along with various

design formulae.

The scientific basis of the precision pointing controller design

methodology proposed herein is relatively new and/or unfamiliar to some

practicing control designers. Therefore, to aid such readers in becoming more

familiar with the underlying scientific basis of our methodology, and to

explain more fully why this new approach is essentially the "best" one can do

in designing precision pointing/tracking controllers for systems operating in

uncertain disturbance environments, a tutorial account of the control-theoretic

principles of our methodology is presented in Chapter 2.

The detailed design and simulation results presented in this report were

developed in collaboration with Mr. Stewart Addington, Graduate Student in

the ECE Dept. of UAH; see also the Acknowledgment at the end of this

chapter.
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Chapter 1

DESIGN OF A NEW HIGH-PERFORMANCE

POINTING CONTROLLER

FOR THE HUBBLE SPACE TELESCOPE*

Chapter Summary

Cyclic thermal expansions and mechanical stietion effects in the

Solar Arrays on the Hubble Space Telescope (HST) are triggering repeated

occurrences of damped, relaxation-type flex-body vibrations of the solar

arrays. Those solar array vibrations are, in turn, causing unwanted,

oscillating disturbance torques on the HST main body, which cause unwanted

deviations of the telescope from its specified pointing direction.

In this chapter we propose two strategies one can adopt in

designing a telescope-pointing controller to cope with the aforementioned

disturbances: (i) a "total isolation" (TI) control strategy whereby the HST

controller torques are designed to adaptively counteract and cancel-out the

persistent disturbing torques that are causing the unwanted telescope motions,

and (ii) an "array damping" (AD) control strategy whereby the HST

controller torques are used to actively augment the natural dampening of the

solar array vibrations and the attendant telescope motions, between

triggerings of the stiction-related flex-body relaxation osc/llations.

Using the principles of Disturbance-Accommodating Control

(DAC) Theory a dual-mode pointing controller for a generic, planar-motion

* The control design and simulation results presented in this chapter were developed in collaboration with

Mr. Stewart Addington, Graduate student in the ECE Dept. of UAH; see also the Acknowledgmem at the
end of this chapter.

UAH / ECE Dept. / Dr. C. D. Johnson 1-1 Chapter 1, Final Report
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(single-axis) model of the HST is proposed. This pointing controller

incorporates both the TI and AD modes of disturbance-accommodation.

Simulation studies of the closed-loop system using generic parameter values

dearly indicate, qualitatively, the enhanced pointing-performance such a

controller can achieve.

1. INTRODUCTION

The two large deployable solar array panels attached, in a cantilever-

beam fashion, to opposite sides of the Hubble Space Telescope (HST) main

body (Figure 1) have introduced a new dimension to the problem of

controlling the HST's pointing direction. In particular, the uneven thermal

expansions of the solar army's collapsible structural members, caused by

cyclic solar heating effects, and mechanical coulomb frietion/stietion effects

that resist thermal expansions between structural members are causing

persistent, jerky, "flapping motions" of those solar arrays. Those flex-body

flapping motions are of a damped-oscillation type and are triggered in a

sporadic, random-like manner, depending on the intensity of the solar

heating/cooling and on the varying stiction thresholds associated with sliding

interactions between various structural members of the arrays.

These flapping motions of the solar arrays induce, through their

attachment points with the main body of the HST, a series of randomly

triggered damped-oscillation disturbance torques that cause the HST main

body to veer away fi'om the precision point needed to satisfy experiment

requirements. Thus, an effective HST pointing control system must cope with

this uncertain disturbance environment.

In this chapter we will derive a new conceptual form of HST pointing

controller that effectively accomplishes this goal. Simulation results, using a

non-linear, planar-motion model of the HST with generic parameter values,

UAH I ECE Dept. / Dr. C. D. Johnson 1-2 Chapter 1, Final Report
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Fig.1: The HubbleSpace Telescope(HST)withDeployedSolarArrays

UAH I ECE Dept. I Dr. C. D. Johnson 1-3 Chapter 1, Final Report



DesignofaNewHigh-PerformancePointingControllerfor theHubble Space Telescope
NAS8-38609/D. O. 49

demonstrate the effectiveness of the proposed new controller in a single-axis

control context. A generalization of the control concepts presented here, to

include full 3=axis pointing control of the HST, should provide a significant

enhancement to the actual HST pointing performance.

2. CHARACTERIZATION OF THE SOLAR ARRAY FLAPPING

DISTURBANCES IN THE lIST CONTROL PROBLEM

The randomly-triggered flapping solar arrays pose a unique challenge

to the HST controlsystem designbecause theuncertaindisturbancetorques

theyinducetotheHST main body arenot effectivelymodeled as steady-state

"random processes" with known means and variances. Consequently,

traditional"stochasticcontroltheories"[l]are ineffectivein accomplishing

high-performance,precisionpointingof HST in the face of those flapping

solararrays.

The essentialfeaturesof theHST uncertaindisturbancetorquesdue to

flappingsolar arrays are:(i) once triggeredthey have a distinguishable

"damped-oscillation"type wavefonn characteristicthatmay have varying

initialconditions,but is always relativelysmooth and well-behaved

(compared to the grosslyjagged, erratic"white noise"of random process

theory),and (ii)they are triggeredin a once-in-a-whilefashion with a

relativelywide time-window between successivetriggers(compared m the

virtuallycontinuous fusillade of triggering events associated with

mathematical "white noise"). Thus, for instance,individualcomponents

(modes) wi(t) of the HST uncertaindisturbancetorques,due to the solar

arrays,can be ratheraccuratelyrepresented(modeled) by a mathematical

"spline"expressionoftheform

wi(t ) = C 1e -13it sin(o) i t) + C 2 e -13it cos(o i t) (1)

UAH / ECE Dept. / Dr. C. D. Johnson 1-4 Chapter 1, Final Report
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where 13i>0 denotes the damping parameter and oi>0 denotes the oscillation

frequency and where the spline "weighting-constants", C1,C 2 in Eq.(1) arc

allowed to jump in value from time-to-time, in an uncertain, random-like

manner (thereby allowing for different "initial conditions" on Eq.(1) at each

triggering event). The numerical values of (_i,oi) in Eq.(1) can be estimated

from examination of actual flight data, results of ground experiments, etc.

It can be argued that, in practice, the parameters 13i,oi in Eq.(1) might

be subject to some degree of uncertain, time-dependent variation due to wear,

distortions, thermal effects, etc. which may render the model Eq.(1)

ineffective. In such cases, an effective alternative to Eq.(1) is the

considerably more robust polynomial-spline representation

wi(t) ----C1 + C2t + C3t2 + ... + Cmt (m-l) (2)

where m is an appropriate positive integer and, as in Eq.(1), the "wei_ting-

constants" C1, C2,...,Cm are allowed to jump in value in an uncertain, once-in-

a-while fashion, herem°_er called "stepwise-constant" behavior. Expression

Eq.(2) can effectively represent a broad class of uncertain, meandering-type

disturbance functions wi(t), including complex "oscillations" of the type

Eq.(1) with completely unknown waveform characteristics. In practice,

satisfactory results using Eq.(2) can usually be achieved even with relatively

small values for m, typically m = 3 or m = 4 (the so-called quadratic and

cubic "spline models", respectively.)

In summary, individual modes of the uncertain disturbance torques

associated with the flapping solar arrays on the HST have relatively smooth,

well-behaved, time-domain waveform characteristics of the randomly

triggered, damped-osciUation type. Consequently, those disturbance torques

are effectively represented by mathematical "spline expressions" of the form

UAH / ECE Dept. / Dr. C. D. Johnson 1-5 Chapter 1, Final Report
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Eq.(1) or Eq.(2). It is remarked that in some situations, a combination of

Eq.(1) and Eq.(2) may be most effective.

3. A CCOMMODA TION OF SOLAR ARRA Y DISTURBANCES IN THE

HST

As stated earlier, the HST disturbance torques associated with flapping

solar arrays cause the point of the HST main body to deviate from the desired

direction. Thus, it is clear that those persistent disturbances cause only

unwanted, upsetting effects. Consequently, the primary goal of the HST

pointing controller, with respect to accommodating those disturbances, should

be to (ideally) generate opposing control torques that automatically adapt-to

and cancel-out (counteract) the persistent disturbance torques and their

upsetting effects, in real-time. Under this latter mode of control, the main

body of the HST would be effectively isolated from the disturbing motions of

the flapping solar arrays, so that the point of the HST could then be regulated

as if there were no solar array flapping motions. Hence, we hereafter refer to

this control strategy as the total isolation (TI) mode of control.

In the TI mode of control, no effort is made to mitigate the flapping

motions of the solar arrays themselves. However, the (mild) natural structural

damping effects in the solar array structures will tend to dampen-out those

oscillations-until such time that the oscillations are once again triggered by

another thermal/stiction relaxation effect. In some situations, it may be

desirable to employ the HST controller to hasten the natural damping-out of

the solar array oscillations. This can be accomplished by designing the HST

controller to create strategic rocking motions of the HST main body that are

so timed and phased as to accomplish "active damping" (damping

augmentation) of the solar array oscillations. We hereatter call this control

strategy the _ damping (AD) mode of control. Practical realization of the

UAH / ECE Dept. / Dr. C. D. Johnson 1-6 Chapter 1, Final Report
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AD mode of control would seem to require a relatively "smart" type of HST

controller. However, it will be shown that a simple linear controller will do

the job.

The TI and AD modes of control constitute what we believe to be the

two main options to be considered in designing the HST pointing controller to

accommodate uncertain disturbances such as oscillations of the solar arrays.

For maximum flexibility in implementations, it is desirable to have a mode-

switching arrangement for the TI/AD control laws, whereby one can

gracefully shkR control action fi'om the TI mode to the AD mode (and vice-

versa) in real-time, as dictated by the real-time needs on-station.

In the subsequent sections of this chapter we will demonstrate how a

unique branch of modem control (Disturbance-Accommodation Control

[DAC] Theory [2]-[6]) enables one to systematically design physically

realizable, all linear, time-invariant controllers that embody the TI and AD

modes of disturbance-accommodation described in this section.

4. A SIMPLIFIED, PLANAR-MOTION CONFIGURATION MODEL

OF THE lIST

The objective of this chapter is to develop, and demonstrate the

performance characteristics of a new control concept for the HST pointing

controller design. For this purpose, we will consider a simplified planar-

motion (single-axis) generic configuration model of the HST, Figure 2, in

which the inertias and flex-body (flapping) motions of the attached solar

arrays are represented by rigid, movable arms attached to either side of the

HST main body through idealized "pin-joints." To replicate one mode of the

structural flexibility and structural damping effects of each of the solar arrays,

the back-and-forth oscillations 01(0 02(0 of the two arms about their

respective pin-joints are considered to be resisted by linear torsional "spring"

UAH / ECE Dept. I Dr. C. D. Johnson 1-7 Chapter 1, Final Report
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T2=-k21 e2-k _

J2,M2

T='kl 101-k1201

mtrol torque 01

Fig.2: Planar-Motion (Single-Axis) Configuration Model of HST andAttached SolarArrays
(ReplicatingOne Flex-BodyModefor EachSolar Array)

UAH / ECE Dept. / Dr. C. D. Johnma 1-8 Chapter 1, Final Report
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and linear viscous "damping" effects that may be different for each arm. The

normal (equilibrim) positions of the arms are perpendicular to the HST main

body.

To simultaneously replicate multiple flex-body modes of the solar

__.__y.s, one simply imagines multiple rigid arms attached to each of the two

pin-joints in Figure 2, where the rotational spring constant damping mass and

inertia of each arm is chosen to conform to the known fi'equency, damping

and inertial properties of the particular flex-body mode being replicated. In

this way one can consider as many simultaneous flex-body solar array modes

(and flex-body modes of other HST appendages) as desired, using the pin-

jointed rigid-arm technique as shown in Figure 3. Our decision to consider

here only one flex-body mode, Figure 2, for each solar-array is motivated by

the concept-demonstration nature of this chapter. In particular, we wish to

avoid introducing additional complexity that is not essential to illustrating the

basic concept of our modeling and control-design.

The planar-motion, concept-demoustration model in Figure 2 can be

viewed as representing the actual HST when the solar arrays are rotated such

that the flapping motions of each solar array consist of essentially one flex-

body mode (which may be different for each array) and such that the

associated disturbance torques induced to the HST main body cause relatively

little out-of-plane rotational motions of the main body. The new controller

scheme we develop here for the single-axis model in Figure 2 can be

employed in each of the other two (rotational) axes (with proper coordination

imposed between each such controller) to achieve full three-axis coordinated

control of the HST main-body rotations for arbitrary positioning of the solar

array panels.

UAH / gClg Dept. / Dr. C. D. Johnson 1-9 Chapter 1, Final Report
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i •

Fig.3: Planar-Motion (Single-Axis)ConfigurationModelof HST andAttached SolarArrays
(Replicating 3 Flex-Body Modes for Each Solar Array)

UAH / ECE Dept. / Dr. C. D. Johnson 1-10 Chapter 1, Final Report
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h isremarked thatour introductionof the simplified,planar-motion

HST configurationmodel inFigure2 was not motivatedprimarilyby a desire

to keep thingssimplebut,rather,by the technologicalnecessityof having a

mathematicalmodel of HST thatisbased on "firstprinciples"of dynamics.

In particular, the ability to derive a controller that accomplishes the TI mode

of disturbance-accommodation, as described in the previous section, requires

that one begin with an HST mathematical model that embodies the actual

dynamical equations of motion for the HST main body and for the "interface

dynamics" associated with each of the attached solar arrays. Alternative

mathematical models based on modal decompositions and/or transfer-fimction

methodologies may not provide such detailed information and may "obscure"

some novel control possibilities such as the TI mode of control we develop

here.

5. EXACT EQUATIONS OF MOTION FOR THE PLANAR-MOTION

HST MODEL IN FIGURE 2

The simplified, planar-motion HST configuration model in Figure 2 is,

in fact, rather "complicated" from the dynamics point of view. In fact, the

derivation of the exact equations of motion for Figure 2 would be extremely

difficult and time-consuming using any of the classical methods of dynamics,

such as Newton's, Lagrange's, or Hamilton's methods. For this study, the

exact equations of motion for Figure 2 were derived, in completely general,

explicit symbolic form, using the method of Kane's Equations [7] as

implemented in the computer-aided modeling program Autolev_. The

resulting mathematical model consists of a set of five (5) simultaneous,

second-order, highly nonlinear, differential equations which can be written in

the vector-matrix form

M(y)y + D_,+ Ky+ f(y,_,) = bu (3)

UAH / ECE Dept. / Dr. C. D. Johnson 1-11 Chapter 1, Final Report
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where y is the 5-vector of position variables y = (dp, 01, 02, _, 1"1)as defined in

Figure 2 and u is the (single-axis) HST main body control torque relevant to

the planar-motion configuration shown in Figure 2. The elements of the 5x5

matrices {M(y), D, K} and of the vectors {b,f(y, St)} in Eq.(3) are determined

by various masses, inertias, lengths, etc., and their explicit expressions are

given in Appendix A of this chapter. Those expressions are completely

general in the sense that they are given in terms of arbitrary, symbolic masses,

inertias, lengths, etc.

The natural dynamic behavior of the mathematical model Eq.(3) turns

out to be surprisingly complicated, rich in diversity, and often eotmter-

intuitive, owing to the strong, non-linear "inertia-coupling" that exists

between the motions {d_(t), 01(t), 02(0, _(t), rl(t)}. That inertia coupling

effect is manifested in the highly non-sparse structure of the non-constant,

position-dependent "mass-matrix" M(y) in Eq.(3) which has the form (it turns

out that mij = mij(01, 02), in general; see Appendix A of this chapter for

explicit mij expressions)

M

m

mll m12 m13 m14 m15

11121 11122 0 m24 m25

m31 0 m33 m34 m35

m41 m42 m43 m44 0

n ms1 m52 m53 0 m55

(4)

We will now proceed to show how one can develop TI and AD pointing

eontroUers for the HST model in Figure 2, based on the "exact" equations of

motion Eqs. (3), (4).

UAH I ECE Dept. I Dr. C. D. Johnson 1-12 Chapter I, Final Report
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accommodated by well-known, simple modifications of the results presented

here.

Design of the TI mode of control begins by idenfif3dng the particular

2nd order equation of motion that governs the HST main-body rotation d_(t) in

Figure 2. That equation can be obtained by first multiplying Eq.(3) by M-i(y)

to obtain (the existence of M -1 is established in Appendix B of this chapter)

y + M-I(y)Dy+ M-I(y)Ky + M-I(y) f(y,y) = M-l(y)bu (5)

and then reading offthe first of the five equations represented by Eq.(5). The

result is the 2 nd order, non-linear equation of motion

+ g (01,02,01,02,_b,_,_ ! ) = h(ql,q2)u (6)

where the precise expressions for the functions g(-), 11(. ) are given in Eqs.

(C.2) and (C.3) of Appendix C of this chapter. Eq.(6) governs the actual

angular motions d_(t) of the HST main body as shown in Figure 2, for an

arbitrary control torque input u(t). Note that the one term g(-, .,. ) in Eq.(6)

embodies all of the disturbing torques induced on the HST main body by the

flapping motions of the solar arrays in Figure 2.

At this point, it is useful to introduce the notion of an ideal-model for

the desired controlled (closed-loop) motions of the pointing angle _b(t), in the

TI mode of control. For this purpose, we assume the desired transient

behavior of d_(t) in the TI mode is represented by the solutions of the specified

(given) "ideal-model differential equation"

(IdealModel Eq.) _ + (2_COn)+ + (O)n2)dp = 0 (7)

where the values of the parameters (_>0, c0n>0 ) are assumed specified.

Thus, the control designer's task is to design the control function u--u(?) in

Eq.(6) to make Eq.(6) "look like" Eq.(7). In the idealistic case, where all

UAH / ECE Dept. / Dr. C. D. Johnson 1-14 Chapter 1, Final Report
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arguments in g(. ), h(.)

that the ideal choice for the TI controller n(- ) in Eq.(6) would be

u = h-l(Ob 02,)[- k2 _- k1(D4-g( 01,02,0 1,02,(D,_,_I)]

where

can be accurately measured in real-time, it is clear

k 1=012 , k 2=2_C0 n.

(8,a)

(8,b)

However, for this study it is assumed that only d_(t) can be measured in real-

time. Thus we will seek a physically realizable approximation to Eq.(8) as

follows. First, the term h(01, 02) in Eq.(6) will be approximated by a fixed

eoustant fa that is selected to approximate the range of values of h(01, 02) for

a representative range of (01, 02) values. (The determination of fa is

presented in Appendix B of this chapter.) Next, the function g(.,-,-) in

Eq.(8) will be viewed and treated as an unknown, time-varying "disturbance"

term g(t) defined by

g(t) = g(01(t),02(t),01(t),02(t),_(t),_(t),il(t) ) (9)

where {01(t), 02(t),d_(t), _(t), rl(t)} are arbitrary solutions of the exact

equations of motion Eq.(3). A typical time-plot of Eq.(9) is shown in Figure

4, where it can be seen that the unknown "disturbance" g(t) is a smooth, well-

behaved function that slowly meanders back and forth in an oscillating

manner. We will now show how one can estimate the time-function g(t) in

real-time, fi'om real-time measurements of dp(t). Thus, following the principles

of Disturbance-Accommodating Control Theory [3, p. 412], we first represent

the tmeertain time-behavior of g(t) by a quadratic polvnomial-spline (See

Eq.(2).)

g(t) = C1 + C2t + C3 t2 (10)

UAH / ECE Dept. / Dr. C. D. Johnson 1-15 Chapter 1, Final Report
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Fig4: Typical Time-Plotof g(t) in Eq. (9).
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where the weighting "constants" Ci in Eq.(10) are allowed to jump in a once-

in-a-while, stepwise-constant manner, as described below Eq.(2). Next we

introduce a state-variable model for g(t) by defining

zl = g(t) , z2 = g(t) , z3 = g(t) (11)

and observing that the zi obey the following differential equations

Zl =z2 + ol(t) , Z2= z3 + o2(t) , Z3= cra(t ) (12)

where the symbols oi(t) in Eq.(12) denote totallx unknown, unmeasurable,

sparsely populated time-sequences of randomly-arriving, random-intensity

impulses (Dirac impulses). Those impulses represent the "cause" of the once-

in-a-while jumping of the Ci values in Eq.(10).

The foregoing arguments and approximations enable us to rewrite the

exact equation of motion Eq.(6) for _(t) in the approximate and simplified

form

_;= fau - w(t) , fi_ h , w(t) = g(t) (13)

where, according to Eq.(11), the "disturbance" term w(t) in Eq.(13) is given

by

w(t) =zl(t ) (14)

and where Zl(t ) is (approximately) governed by the set of impulse-forced

differential equations Eq.(12). The TI control law (8) corresponding to (13)

thus becomes the constant-gain linear control law

u= _-1 [_k2 _-kl_ + _-l(t) ] (15)

where kl,k 2 are defined as in (8b) and where, following standard DAC

techniques [3, p. 430], _(t) and _l(t) denote on-line, real-time estimates of

+(t) and zl(t ) obtained from a composite plant/disturbance state-observer

(Kalman Falter), based on the approximate plant-model Eq.(13), and the

"disturbance" model, Eq.(12). That composite state-observer operates on the

plant output measurement d_(t) and plant control input u(t) to produce accurate

UAH / ECE Dept. / Dr. C. D. Johnson 1-17 Chapter 1, Final Report



Designofa New High-Performance Pointing Controller for the Hubble Space Telescope
NAS8-38609/D. O. 49

real-time estimates of the state-variables {x 1 = _b,x 2 = _b} for the actual plant

Eq.(6), as well as estimates of the state-variables { z 1 = g(t), z2 = g(t),

z 3 = _(t) } for the "disturbance" term w(t) in Eq.(13). The design of the

composite state-observer for this TI mode of control is described in Appendix

C of this chapter.

Substituting the control expression Eqs. (15), (8b) into the actual

equation of motion, Eq.(6), yields the actual, closed-loop equation of motion

for t_(t) in the TI mode as

+ g(.,.,. ) = h(-,. )frl [-k 2 _.klt _ + _ l(t)] (16)

which can be rearranged to read

+ h fi-1 [ (2;C0n)_ + (COn2) _ ] =-g(.,. ) + h fl-1 _-l(t) (17)

Comparison of Eq.(17) with Eq.(7) shows that the desired ideal-model

behavior of dp(t) in the TI mode of control will be realiTed, provided the

assumed approximations

h(-,-)h -1= 1 , _ _ _(t) (lSa)

_l(t) _ g( 01(t),02(t),01(t),02(t),_(t),_(t),fl(t ) ) (18b)

are achieved by the aforementioned design procedure. This completes the

design of the HST controller for the TI mode of control.

Design of the AD Controller

The TI mode of control automatically isolates the HST main-body from

any disturbance torques induced by the flapping solar arrays and is therefore

proposed as the normal control mode for HST pointing experiments. On the

other hand, one can imagine exceptional situations in which the prompt

damping of excessive solar array oscillations becomes a primary concern.

For those situations, the Array Damping (AD) mode of control provides a

means for actively augmenting the natural damping of the solar array
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oscillations by carefully controlled and orchestrated dynamic motions of the

HST main body. To achieve this active augmentation to the solar arrays'

natural stmcu_ damping effects, the AD controller must maneuver the HST

main-body motions _(t) back and forth, so as to induce controlled, time-

varying, "bending torques" [at the body/solar array attachment point

(structural interface)] that are strategically timed to dissipate the energy of the

oscillating solar arrays themselves. It is rather surprising that this seemingly

complex, intricate control task can be accomplished by a simple, constant-

gain, linear controller, as we shall now show.

The design of the AD mode of control begins by identifying the

particular sub-set of the complete equations of motion, Eq. (3), that governs

the motions ¢(0, 01(t), 02(0. That particular subset consists of the first three

2nd order differential equations in Eq.(5), which can be separated out from

(3) and be written as

+ E_y)y + K(y)y + _(y,j,)= Y_y)u (19)

where _-= ( d_,01, 02) and where D{y), K(y), f{y,j,), b(y) can be determined

from M-1D, MqK, etc. in Eq. (5). Next, one must linearize Eq. (19) in the

neighborhood of the anticipated "operating-point" values of {d_(t),01(0,02(t)}.

For our problem those operating point values are

=+=0 , 01=01 =0 , 0 2=0 2 =0 (20)

Linearizing Eq. (19) in the neighborhood of Eq. (20), using standard

procedures, then yields Eq. (19) in the linear_ constant-coefficient form [Note:

f(y, j,) = 0 at d_=+= 01 = 01 = 02 = _)2= 0]

+ I3_ + Ky = bu (21)
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/

where { I),I(,b } denote the values of {_y),K{y),5(y)} at the operating

values Eq.(20). In the AD control mode the objective is to simultaneously

achievethethreestabilizationconditions

t_(t)--_ 0 ; 01(t) --_ 0 , 02(0 --_ 0 (22)

For this purpose we first seek u(.) in the (idealistic) constant-gain linear state

feedback form

c_,_) = kclt_ + kc201 + kc302 +kc4_b+ kc501 + kc6{_2 (23)

where the six elements of the control gain-vector k c = (kcl, ..., kc6 ) are

chosen to place the corresponding six (closed-loop) eigenvalues {_.1, ...,E6}

of Eq. (21) at suitably "stable" locations in the complex plane. An effective

procedure for computing the gains {kcl , ...,kc6}, for any given set of desired

eigenvalues {Z1, ...,Z6}, is outlined in Appendix C. For our simulation

studies, we selected the six Zi to consist of three identical _ of stable,

complex-conjugate roots defined by

_,l_ = -_con -+Jcon'fi-_ 2 ; j=_fL_ , (24)

where (_>0, c0n>0 ) are chosen to yield satisfactory closed-loop response

characteristics for the AD mode.

The rum1 step in the design of the AD control mode is to develop a

state-observer (Kalman filter) that generates accurate real-time estimates of

_(t), 01(t), 01(t), 02(t), 02(t ) _om the available measurement ¢_(t), as needed

to implement the AD control law Eq. (23). For this purpose we developed a

conventional full-order observer based on the linearized model Eq. (21). The

details of that observer design are presented in Appendix C of this chapter.
._ ^ ._ ^ ._

The outputs _b,01,01, 02,02of that observer are used in place of their
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idealized counterparts in Eq. (23) for implementation of the AD control mode.

This completes the design of the HST controller for the AD mode of control.

7. SUMMARY OF THE PROPOSED NEW DUAL-MODE

DISTURBANCE-A CCOMMODA TING POINIgNG CONTROLLER FOR

THE HST

The new HST pointing controller proposed in this study, for the single-

axis model in Figure 2, consists of two distinct controller-algorithm

configurations, one for the total isolation (TI) mode of control and one for the

array damping (AD) mode of control. The TI controller is given by Eq.(15)

and its associated state-Observer [Appendix C, Eq. (C.13) ], where the

parameters (_, COn)are assumed chosen to yield the desired quality of closed-

loop regulation response _t) -* 0. The AD controller is given by Eq.(23)

and its associated state observer [Appendix C, Eq. (C.26) ], where the design

parameters ( _ ,con ) can be chosen to yield the desired "settling-time" for the

actively augmented damping of the solar array oscillations.

In both the TI and AD modes of control, the presumed real-time plant

output-measurements, for the planar-motion configuration of Figure 2, consist

of the HST main-body pointing angle _t) o_. If it should turn out that one

can also accurately measure the rate /_(t) in real-time, that additional

measurement can be incorporated into the composite plant-state/disturbance-

state observers associated with Eqs.(15) and (23); see Appendix C of this

chapter.

In any consideration of a dual-mode controller, the question of how to

gracefully "switch" from one mode to another naturally arises. In principle,

such mode switehings are usually accomplished by a slow "fading" from one

mode to another, similar to the way one "fades" signals from right to left

speakers in a stereo sound system. However, this fading procedure must be
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done in Such a way that one control mode does not tend to "fight" the other

control mode during the fading/mixing process. In this project it was found

that a "fade" to the zero control level, in one control mode, was necessary

before attempting to fade=into the other control mode. Otherwise one ran the

risk of "fighting" developing between control modes during fading, as alluded

to above. A further investigation of this issue seems warranted.

8. GENERIC PARAMETER VALUES FOR SIMULATION EXERCISES

OF THE CLOSED-LOOP PLANAR-MOTION FIST MODEL (FIGURE

2)

The numerical parameter values provided for the mathematical models

supplied by NASA for this project were not appropriate for the alternative

"first=principles," planar=motion dynamic model Eq. (3) we derived for our

controller design procedure. Consequently, for our closed=loop simulation

studies of the HST model in Figure 2, we chose a set of numerical parameter

values, (for the various masses, inertias, length, etc. indicated in the

configrumtion model of Figure 2 and in the analytical model Eq.(3) ) which

seem to be representative of the relative scale of values associated with the

real=life HST. As a matter of fact, since our "exact" model Eq.(3) is derived

in symbolic mass, inertia etc. parameter terms, and our controller design

procedure is likewise expressed in terms of those same symbolic terms, it is a

simple matter to re-evaluate our controller expressions and our simulation

results for any given numerical values of HST/Solar Array parameter terms.

Accordingly, the following two sets of numerical parameter values for Figure

2 were chosen for our simulation studies.

For both the symmetric and asymmetric solar array cases

101 = 2.5 m , 102 = 2.5 m , lg = 1.5 m
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11 = 4.8 m

Mo = 10,5000 kg

M 1 = 180 kg

M2= 180kg ,

12= 4.8 m

Jo = 10,5000 kgm 2

J1 = 180 kgm 2

J2 = 180 kgm2 (25)

For the case of dynamically symmetric solar arrays

At the 0.6 Hz. flex-mode.

kll = 5.5 , k12 = 0.001

k21 = 5.5 , k22 = 0.001 (26a)

At the 0.11 Hz. flex-mode.

kll = 0.18 , k12 = 0.001

k21 = 0.18 , k22 = 0.001 (26b)

For the case of dynamically asymmetric solar arrays

At the 0.6 Hz. flex-mode.

kl! = 6.5 , k12 = 0.01

k21 = 5.5 , k22 = 0.001 _- (26c)

At the 0.11 Hz. flex-mode.

kll = 0.3 , k12 = 0.001

k21 =0.18 , k22 = 0.001 (26d)

The set of HST controller parameter values chosen for use with Eqs.(25),(26)

are"
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!

For the TI controlmode:

= 0.9 , con = 1.0 (27)

For theAD controlmode

= 0.7 , con = 1.0 (28)

9. RESULTS FROM CLOSED-LOOP SIMULATION EXERCISES OF

THE lIST MODEL, EQ. (3)

The "exact" non-linear model Eq.(3) associated with Figure 2 was

simulated and exercised in a series of runs on a digital computer, using the

two cases of plant parameter values shown in Eqs.(25),(26). In that series of

simulation exercises, the control term u in Eq. (3) was implemented, first as

the TI controller Eq. (15) and associated state-observer, and then as the AD

controller Eq. (23) and its associated state-observer, using the corresponding

controller parameter values shown in Eqs.(27), (28). To demonstrate the

ultimate performance capabilities of the TI and AD control modes, control

actuator saturation effects were not simulated in these concept-demonstration

exercises. The simulated excitation of the solar array oscillations was

accomplished by applying random, once-in-a-while, short-duration, high-

intensity external torque pulses (simulated torque "impulses") to one or the

other of the solar-array arms shown in Figure 2. The resulting angular

motions d_(t), 01(t), 02(0 of the HST main-body and flapping solar arrays, for

both the TI control mode and the AD control mode, and for both the

symmetric and the asymmetric solar array cases, are shown in the series of

time-plots presented in Figs. 5-7. The time-plots in Figure 5 clearly show the

TI controllers' ability to quickly adapt to, and counteract, the time-varying
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disturbance torques induced by the vibrating solar arrays and thereby

THIS SPACE IS INTENTIONALLY LEFT BLANK
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effectively isolate the HST main-body i_om those disturbances, while

rnzintzining a high-quality of pointing set-point regulation d_(t)_, 0.

The closed-loop performances of d_(t), 01(t), 02(0, corresponding to

the AD control mode are shown in Figs. 6-7. Those time-plots demonstrate

the ability of the AD controller to strategically maneuver the HST main-body

motion dp(t) so as to actively augment the natural structural damping in the

solar arrays and thereby hasten the rate at which 01(t) _ 0, 02(t) _ 0. It is

interesting to note that in the case of perfectly symmetric solar arrays, Figure

7, the AD controller cannot distinguish which of the two solar arrays is

causing the disturbing torques (i.e. a disturbance unobservability condition

arises in the composite plant/disturbance state-observer used in the AD

controller; see Appendix D of this chapter) and thus the AD controller cannot

decide to which solar array it should direct the damping augmentation effort.

Nevertheless, in that singular case, the AD controller automatically proceeds

to maneuver the HST main-body so that the two solar arrays are coerced into

flapping in an equal-but-opposite (birdwing-like) manner, 01(t) - - 02(0, so

that the corresponding net torque disturbance induced to the HST main body

is thereby damped to zero, while 01(t) --_ 0 and 02(0 --_ 0 according to their

natural damping characteristics.

When the two solar arrays are simulated as asymmetric, the AD

controller succeeds in individually augmenting the natural damping of both

01(t ) _ 0 and 02( 0 _ 0 as evidenced in Figure 6. It is remarked that the AD

mode of control, as presently developed, exhibits a relatively small domain of

(closed-loop) stability and tends to be rather sensitive to system parameter

variations. These undesirable features, which appear to be a consequence of

the non-linear behavior of the terms M-l(y)b and M-l(y) f(y,y) in the basic
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plant model Eq.(5), rather than a characteristic of the AD controller itself,

constitute an important area for further research.

10. A COMPUTER-ANIMATION VISUALIZATION OF THE

SIMULATED lIST CLOSED-LOOP RESPONSE DYNAMICS

The unique performance characteristics associated with the TI and AD

control modes are dramatically evidenced by viewing a computer-generated

animation of the controlled movements of the 3-body HST model (main-body

and two attached "arms" representing the two solar arrays) as depicted in

Figure 2. For this purpose, the normal simulation data { dp(t), 01(t), 02(0 }

was input into a specially prepared computer graphics program which

repeatedly "draws" frames of Figure 2 for a sequence of closely spaced

discrete-time values tk, k = 0,1,2,3, ... When that set of frames is displayed

on the computer monitor in rapid sequence, one can "see" the three

interconnected component bodies in Figure 2, "moving" in planar-motion just

as they would in reality. The intricate maneuvers of _b(t) one can thereby

"see" being performed by the HST main-body, in the TI and AD control

modes, are rather impressive.

11. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR

FURTHER WORK

In this chapter we have developed, and demonstrated by simulation

exercises, a new dual-mode HST control concept for accommodating time-

varying, persistent, uncertain torque disturbances (such as those due to flex-

body "flapping" of the solar arrays) that act on the HST main-body and

degrade precision pointing of the HST. The new controller consists of two

distinct control modes. In the Total Isolation (TI) control mode (envisioned

as the primary mode of control), the HST control torques automatically

synchronize with, and adapt to, the time-varying disturbance torques (in an
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equal-but-opposite sense) to effectively counteract and cancel the effects of

those disturbance torques in real-time. As a result, the HST main-body is

dynamically "isolated" fi'om the disturbance torques, thereby permitting high-

quality, precision pointing of the HST in the face of such disturbances. The

system closed-loop performance using the TI control mode exhibits a high-

degree of robustuess.

In the Array Damping (AD) control mode (likely to be used only

occasionally, when not in a pointing experiment) the HST's control torques

are used to strategically maneuver the angular rotations of the HST main-

body in a rocking, back-and-forth manner so as to induce an active damping

(damping augmentation) effect to the natural damping of the solar array flex-

body oscillations and thereby hasten the damping-out of those flex-body

oscillations. When the AD control mode is used, the closed-loop system has

the undesired feature of a relatively small domain of stability and relatively

high sensitivities to system parameter variations, apparently due to the non-

linear terms in the plant model, Eq. (5). A redesign of the AD controller to

accommodate those non-linear terms should mitigate this feature.

The qualitative performance capabilities of the proposed new HST

dual-mode controller concept have been determined by closed-loop computer

simulation exercises. Those simulations are based on the exact, non-linear

equations of motion for a simplified, planar-motion, 3-body configuration-

model (Figure 2) of the HST and its solar arrays using a generic set of mass,

inertia, and other parameter values that are considered to be scalewise

representative of the actual HST and its solar array disturbances. As

indicated earlier in this chapter, the HST numerical parameter-values made

available to us for this study (by NASA, Marshall) were not relevant to the

"exact", single-axis nonlinear model (3) we derived and used here. The
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dosed-loop performance capabilities exhibited in our simulation studies of the

simplified (single-axis) HST model are considered to be representative of the

performance that can be achieved for the actual HST, using a full 3-axis

(angular axes) controller designed by the same methodology employed here.

The recommendations for further work, listed below, are directed at efforts

that will validate this claim.

Our recommendations for further work on the new HST pointing

controller concept developed here are as follows:

1. Generalize the configuration-model (Figure 2) and the associated exact

equations of motion, to include arbitrary, 3-axis, coupled angular motions

for both the HST main body and the attached solar arrays. Include

multiple modes of solar array oscillations.

2. Derive the 3-axis TI and AD controller equations corresponding to the

generalized 3-axis model of HST. Generalize the AD controller equations

to accommodate the non-linear terms in the HST model.

3. Revise the 3-axis TI and AD controller equations, as needed, for

implementation in digital control format, [4].

4. Demonstrate the closed-loop performance of the 3-axis HST model, and

associated 3-axis TI/AD controllers, by computer simulation exercises,

using actual HST controller actuator saturation levels and realistic values

for masses, inertia, and other HST / solar array model parameters.

5. Determine the most effective procedure for gracefully "fading" or

"switching" fi-om the TI control mode to the AD control mode, and vice

versa.
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APPENDIX A THE EXACT EQUATIONSOF MOTION FOR THE PLANAR-MOTIONMODEL OF FIG. 2

The exact equationsof motionfor the planar-motionmodelof Fig. 2 were createdby the AUTOLEV

programand output as a FORTRANsimulation.The pertinentdefinitionsinthe sourcecode werethen

copiedto MATHEMATICAand reducedto generatethe equationsshownbelow.Computersimulationsof

theseequationswere performedwiththe originalAUTGLEV generatedcodeto precludethe introduction

of copyingerrors.

For ¢(_)

-[Jo+J, + J2 + (1o21+ lz 2 + ig _ + 2/,(/o, cosOz + lesinO1))Mz

+ (1_2 + 122 + l, = + 2/2(/02 cos O_ -19 sin 02))M2] $

-[J1 + (l_ + loltl cos 01 + 111gsin 81)M1 ]b'1 - [J2 + (1_ + lo212 cos 8_. + 121gsin -8_)M2] 0__

+ [(lg + 11 sin 01)M1 + (l a - 12sin 82)M2] 4"+ [-(/ol + ll cos 01)M1 + (lo2 + I, cos 8_)M2] i_(A.1)

= -u + $_lo,M, + iT$l,M, - $_1o=M2 + i751,M2

+ ($4 + 250119 + O_Ig)llM1 cosel + (_$ - 2501/ol - 0_1ol)11M1 sin81

- ($4 + 25821, + Ogl,)12M2cos8, - (i1¢ + 250_lo_ + O_lo2)l_.M_sin82

For ez(t)

For e2(_)

-[Jz+l_M1 + lolllM1 cos01 + lllgM1 sin el]¢ - [J1 + 12M1]_1 + [0102

+[h MI sin 81]_"- [liM1 cos 81]/_

= - [J1 + 121M1][k110_ + k,_101] + 11M1 [(¢4 - $21g) cos 01 + ($_ + $2/ol ) sin 01]

-[J2+12M2 + lo21_M_, cos02 - l_.lgM2 sin 02]¢ + [0]01 - [J2 + l_M,.]02

-[l_M2 sin O,]_"+ [12M_. cos 0,]/_

= - [J= + t_M=][k=lO=+ k,_O=]+ l_M2[(-_;4 + $'%)co, O=+ (-_ + $'-1o_)_i. 0=]

For _(t) [translationof Mo c.g. in ,_-direction]

(A.2)

(A.3)

[M1 (lg + 11 sin 01 ) + M,_ (l 9 - 1_.2sin 0,)] ¢ + [11M1 sin 01 ]01 - [12M., sin 0,]0_, - [Mo + MI + M,]_" + [0]/_

-- - [¢/$(Mo + M, + M_) + ¢2(lolM1 + lo_.M,.) +

(A.4)
/zMI($ 2 + 2501 + 0_) cos 01 - lzMl($ _"+ 250_ + 02) cos 0_]
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i

i

For _(z) [translation of Mo c.g. in _-direction]

--Ml11[cos81 -- cos 82](_ - [llM1 co$ 81]_1 Jr [llM1 cos 82]_2 Jr [0]_'-- [M 0 Jr M 1 Jr M2] _

= [_¢(Mo Jr M1 + M2) - ¢2lg(M1 + M_) - (A.5)

I1M1(¢ 2 Jr 2¢0, Jr 8_) sin 81 -t- 12M2(¢ _"+ 2¢82 + 8_) sin 82]

State Variables and the Equations of Motion. The equationsof motion (A.1)-(A.5) can be repre-

sentedby the standardsecond-ordermatric-vectorequation for the planar-motionHST configurationin

Fig.2:

M_ ÷ D_ Jr Ky = bu Jr f(y, y)

where

y=[¢, 81, 8=, e, ,7]T

and the 25 elements [M]ij of M are given explicitly by

[M],,1 = - [Jo Jr J, Jr S2 + {1o21Jr 112 Jr lg 2 Jr 211(101 ¢O881 Jr 1, sin81)}M1

+ {1_2 + l, 2 Jr l, 2 Jr 2/2(/o2 cos 0_ - l, sin 02)}M2]

= - [Jz Jr (l_ + 1o111cos81 + lllgsin81)M1 ]

= - [j=+ (t_+ to=_=co_8_- l=I..i. 82)M_]

= [(t_+ t, ,i. 0_)M_+ (t_- t__.in 02)M2]

= [-(lol + l, cos 01 )M, Jr (lo2 Jr l_.cos 8"2)M2]

= - (J1 Jr l_M1 ÷ lozllM1 cos81 + lllgM1 sin81)

--'- - (J1 + l_Ul)

=0

=11 M1 sin 81

= - 11M1 cos 61

= - (J2 Jr l_M_ + lo_.12M2 cos e__- l, lgM_ sin 0,)

=0

= - (J_. Jr l_M_.)

[M]1,2

[M]1,3

[M]l,4

[Mh,_

[M]2,1

[Mb,_

[M12,3

[M]2,4

[M]2,s

[M]3,z

[Mb,_

[M]3.3

(A._)
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[M]3,4 -- -- 12M_ sin 0._

[M]3,5 =I_.M2 cos 02

[M]4,_ = [M1 (lg + l_ sin Oa) + M_(l. - l_ sin 0_)]

[M]4,2 =ll M1 sin 01

[M]4,3 ------- t2M2 sin 02

[M]4,4 = - (Mo + M1 + M2)

[Mh,_ =0

[M]5,1 = - Mlla (cos 01 - cos 0_)

[M]s,2 = -/1 M1 cos Oa

[M]s,3 =llM1 cos O,

[M]s,4 =0

[M]s,s = - (Mo + M1 + M_)

andwhere

D =Diag [0,

K "-Dia 9 [0,

b=[1, O.

The elements f, of the 5-vector f(y, !J) are given explicitly by

[f(Y,/))]1 =¢_lozM_ + iT¢l,M, - ¢_Io2M2 + il¢l, M2

(Zl +l_M])k12, (J_ +l_M2)k22, O, O]

(Jl+l_Ma)kl], (J_+l_M_)k21, O, O]

O, O, 0] T

+ (¢_ + 2¢8119 + O_lg)l, M1 cos01 + (//¢ - 2¢t_1/ol - O_lol)l, M1 sinO,

- (¢_ + 2¢t_19 + t_l 9)12 M2 cos 02 - (//¢ + 2¢0_/o_ + t_ lo2)12 M_ sin O_

If(Y, t))]2 =11 M1 [(¢_ - ¢_lg) cos 81 + (¢//+ ¢"1ol ) sin 81]

If(Y, t))]s =/_M2[(-¢_ + ¢21g) cos 02 + (-¢//+ ¢"lo_) sin 02]

[f(V, Y)]4 = - [//¢(Mo + M1 + M2) + ¢"(lo,M1 +/o2M2) +

l_M_ (¢'_ + 2¢0] + 0_) cos O_ - l] M] (0_ + 2¢0_, + 0_) cos 02]
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[f(y, y)]5 = [_$(Mo+ M1 + M_) - ¢2t_(M1+ Ms) -

11M1(¢ 2 + 2¢_1 + 8_) sin _1 + 12M2(¢ _-+ 2¢82 + 8g) sin 62]

The term Diag denotes a diagonal matrix with main diagonalshown. It should also be noted that the M

matrix is strictly a function of el and e2(the matrices D,K are constants for the model (A.1)-(A.5)). The

ten state-variablesfor (A.6) can be chosen as (zl,..., =1o)= (y,/,).

APPENDIX B EXISTENCE OF M -IAND DETERMINATIONOF h

The existenceof the inverseof the massmatrix,M, andof the scalarh = [M-111,1over the range

of e_,82values of interest, is easily established if the numerical values of the inertia, mass, and lengths

in the planar-motion model are set. Using the parameter values (25) - (28) the determinant of M, for a

representative range of e_, e2values, varies as shown in Figures B-1. The variations in the h value for

those same parameter values and the same range of el, e_values are as shown in Figure B-2. it is clear

from Figures B-1 and B-2 that det.M and h are well-definedand strictly negative for the indicated range of

01,e2values. The chosen approximating constant valuesfor (M, h) are denoted by (M,/,).

For the linearization of (19)and design of the controller and observergains, the representative constant

values for M, M-_ and/_ were determined to be:

10001VI-I =

3o8.,o,872o, 72 ,oo]_6487.2 _4327,2 0 0 _864

540 0 0 -10860 o ]
0 -864 864 0 - I0860j

-0.087898618 0.1317748 0.1317748 -0.0043706495

0.1317748 -0.43244034 -0.19376112 0.0065523381

0.1317748 -0.19376112 -0.43244034 0.0065523381

-0.0043706495 0.0065523381 0.0065523381 -0.092298356

0 0.018988844 -0.018988844 0

(B.1)

0

0.018988844 ]

-o.o18988844/
0 _B.2)

-o.o9_1o2461j

]_= -0200087898618 (B.3)

These constant linearizedvalueswere arrived at by settinge_ande2to zero and calculating the resulting

values 0fM, M -_ and h.
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at 01=0,02=-0
deL M = -2.4325958568701 E+ 19

deL M

I Figure B-l: Variations in det. M ]
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A

h = h = -0.000087898618
at 01=0,e2=-0

Figure B-2: Variations in h

=
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APPENDIXC DESIGN OF COMPOSITEPLANT/DISTURBANCESTATE-OBSERVERSFOR THE TI

AND AD CONTROL MODES

With the assumption that M is non-singular(a valid assumption as shown in App. B) then (A.6) canbe

rewritten as

-- -M-1Dy - M-1Ky + M-tbu + M-Z f(Y, Y) (C.1)

DESIGN OF THE T! CONTROLLER GAINS. The equation for _ containedin (c.1) is

= [M-1]I,1 u -- g (C._)

where

g =[M-111,2(J, + l_/_l )(]Cl181 -_- ]c1201)

+ [M-111,a(J2 + l_M2)(k_182 + k_282) (C.3)

-- M-If(Y, Y)

The symbolic,analyticalexpressions for [M- 111,1,[M- 111.2,[M- 111,3 are extremelylong andcomplicated

and are not reproduced here. Linearizingthis equationat 81= 82= o results in

_;=/,,, - ._(_) (c.4)

where the _ term includes the linearization errorcaused by the inevitable variation in M: that is,

g(t) : g -- ([M-1]I,1 -[_/_-l]l,1)?j (6.5)

Next, we approximate the time-variation of _(t) _ zl by the m'th order polynomial sptine (here m =

1,2, 3.... is chosen by the designer).

_(_)= c, + c2_+... + c,J "-1 (c.6)

which implies that the dynamics of _(t) is modeled(approximately) by the m'th order system [3;p.413]

" -[°o
L'"_]"J L ",,,(0 J

(c.7)

wherez,___ is the m - 1 order identity matrix and Cz"_'indicates the m'th derivative of z,. The elements

o-_(t)denote sparse sequences of randomly arriving, random intensity Dirac delta functions (impulses),
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accounting for the once-in-a-while stepwise changes in the coefficients c_of the approximatingpolynomial

spline (c.6).

Utilizing the controlseparability property inherent in DACdesign methodology [3;p.438]allows the HST

control torque action, u, to be split into a set-point regulation part u, and a disturbancecancellation part

ud as follows

where one defines u, as

and defines u,_as

u = u, + u_ (C.8)

u, = _-1 (k_¢ + k2¢) ; assuming ¢,v = 0 (c.9)

u,_= _.-lzl (C.10)

Assuming 9(t) = _1;/, = h, etc. the resultingclosed-loop equation for ¢ is:

+ k2¢ + kit = 0 (C.11)

where kl and ks can be chosen as in (8.b) tOobtain the desired closed-loop dynamics for ¢.

DESIGN OF THE TI OBSERVER GAINS. The composite equation of motion for (c.2),(c.5) and (c.7)

is

] I] itl[ ]i ; [,,,,,,1°o
,, =[oo'_o+,].,+ .÷o,,,)
_) ( " L'_'(t)J

Setting ._= [¢ ¢ zl .. {_;')] T, (C.12) can be written

A full-order state-observer for (c.13) has the form

= £_ + 1;,, + koC(# - _)

(c.I2)

(c.13)

(C.14)
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where (:) denotes the observer's estimateof (.) and the plant output measurementis

_ = CE: = ¢b (c.]5)

The state-estimation error for the observer(c.14) is

2.

= -_ - • (C.16)

whichobeys the well-known dynamical equation (between impulses of o-(t))

= (.4. - koC)E (C.17)

whereko = [kl, k2,..., k,-,,+2]T.

Using (c.12), and assumingthat the only outputmeasurement is ¢, the observererror dynamics (c.17)

reduces to

-kl

-km+1

-k,,+2 0 ...

The characteristic polynomial of (c.18) is computedto be

(C.18)

Sm't"_ "{- kl 3m'P1 -_- .-- -}- km+l$ -_ krn-.I-2 = 0 (C.19)

The roots of this polynomial may be set to any desired values via proper selection of the observer gains

kl.

If both ¢ and ,_ are output measurements, the structure of the full-order observer (c.14) should be

modified by setting _ = (¢, ¢)-r and redefiningc accordingly, see [3;p.430].

DESIGN OFTHE AD MODE CONTROLLER. We set ]5 = M-ZD, I_ = M-ZK, ,f = M-lf(y,t_), and

definethestatevector_ as

_-" [¢, 81, 82, _, _1, _2] m (C.20)

Then, owing to the form of the D and K matrices, the state vector equation of motion governing _(t)

becomes

2.

z = A_ + l_u+ _ (C.21)
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where

L

e = (e_ + 62)/v_ (c.26)

A COMPOSITE STATE-OBSERVER FOR THE AD MODE. A full-order state-observer for (c.22) has

the form

= = it + _. + ko(_ - C_) (C.27)

wherez denotes the estimates of _:and the output measurementsare denoted by

= c_ = o (C.2s)

The observer's state estimation error is definedby

c = } - z (C.29)

whichhas the error dynamics:

= (._. - koC)c; ko --" []¢1, ]¢2,--., ]¢6] T (C.30)

i

Using the Linearized Model in Appendix C, and assuming that the only output measurement is ¢(t),

(c.3o) reduces to

"--kl 0 0 1 0 0

-k2 0 0 0 1 0

-k3 0 0 0 0 1

-k4 -[_:h,_- -[g]_,_ 0 -[flh,_ -[6h,_
-k_ -[_:b-,-_ -[K]2,_ 0 -[6]__,._ -[6]_,3
-k6 -[_:]3,__ -[_:]_ 0 -[613,._ -[613,3.

E (Cm)

The eigenvalues of (c.31) can now be chosen to obtainthe desired observer dynamics and the corre-

sponding ko can be computed.

If both ¢ and ,_are output measurementsthe full orderobserver (C.27)should be reconfigured by setting
• m

.g= [¢, ¢] , modifying c accordingly, and proceedingas before.

UAH / ECE Dept. / Dr. C. D. Johnson 1A-12 Chapter 1, Final Report



Design of a New High-Performance Pointing Controller for the Hubble Space Telescope
NAS8-38609 / D. O. 49

SingularCase. As shown in Appen. D, the equation for computing the observer gain Ko becomes sin-

gular when M iS symmetric, kll = k21and k12 = k__. In this case, disturbances caused by the Solar

Arraysappear as a single disturbancewith one dynamical characteristic. In that case the same observer

design method outlined above is used but with the transformationof variable (on4) and associated state

reduction (c.26).

APPENDIX D CONTROLLABILITY AND OBSERVABILITYANALYSIS FOR THE CASE OF

DYNAMICALLYSYMMETRICSOLAR ARRAYS

Observability Analysis. When the solararrays in Fig. 2 are dynamically symmetric (i.e. kll = _2_and

k12= k2=).The linearized state equations (c.22) for ¢, ol, and o2result in a full-order observer equation

of the form:

where

and

& =Ao& + bou+ ko(y- &);

e, o: $

y =Cz = ¢

Ao =

F0 0 0 1

io o o o
0 0 0 0

0 b b 0

0 d e 0

0 e d 0

0 O"

1 0

0 1

c c

I g
9 f

bo "-

0

0

0

1

0

0
. °

ko= [kl k_'e k3 k4 k5 k6] T

Assuming that y = c= = ¢ and defining the observer estimation error for (D.1) to be

The dynamics of _(_) are governed by

= (Ao - koC)E

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)
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where

Ao - koC = 0O1Oi]1-k2 0 0 0 1 0
-k3 0 0 0 0

-k4 b b 0 c

-k_deOf

-k6 e d 0 g

Equating det [sZ- (Ao - koC)] to a general sixth order polynomial ins yields

(D.6)

(D.7)

which allows the k_'sto be determined. The resultis:

Ps = - 2f + kl

P4 =(-2d + f2 _ g2) _ 2fkl + k4

t93 =2(dr - eg) + (f2 _ 2d - .q'-')kl -q.-b(k2 .q- k3) - 2fk4 + c(k5 -4-k6)

P2 =(d 2 - e 2) + 2(df - eg)kl + (ca+ ce - 2bf)(k2 -t- k3) -I- (f2 _ 2d - g2)k4

+ (b - cf + cg)(ks + k6)
(D.8)

pl =(d _ -- e2)kx + [b(e - d+ f_ - g2) + c(g - f)(d + e)] (k2 + k3) + 2(dr - eg)k4

+ [b(g -- f) + c(e -- d)] (ks + k6)

Po = [b(d - e)(f + g) + c(e 2 - d2)] (k2 + k3) + (d 2 - e2)k4 + b(e - d)(ks + k6)

Asshown above, thesix equations for r,; have only four variables: kl, (/c_+/c3), k4, and (ks + k6). This is

due to a loss of complete observability of the pair (Ao, c) when the solar array flex modesshown in Fig.

2 are dynamically symmetric. The observergains are thus not generally solvable for the symmetric case.

The set of equations (D.8) however does suggest that in the dynamically symmetric solar array case the

original state i in (D.1) should be reduced indimension to read ,_= [¢, (ol + o_), ¢, (el + d2)]which

will restore complete observability to the reduced system.

Controllability Analysis. The controllabilitymatrixfor (c.22) in the case of symmetric solar arrays is

[bo ,A.obo A_bo A3bo A_bo A_bo] =

0 1 0 0 0 O"

0 0 0 0 0 0
1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

(D.9)

whichobviouslyhas rank=2 indicatingthatnot all of the statesof (c.22) are controllable when the two solar

arraysare dynamically symmetric.
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Chapter 2

FUNDAMENTAL CONCEPTS AND LIMITATIONS IN PRECISION

POINTING AND TRACKING PROBLEMS

Chapter Summary

In this Chapter, we first describe the generic pointing and tracking

problems in a general dynamical system/state-space context Then, we

analyze the information-theoretic aspects of the various uncertain signals in

those problems, and establish some fimdamental performance limitations

those uncertainties induce, using various results and principles of modem

control theory. It is shown that the introduction of "waveform models" for

uncertain signals, leading to an extended-state formulation of pointing and

' tracking problems, is the most effective rational means of coping with those

fundamental limitations.

1. INTR 01) UCTION

The design of pointing and tracking control systems constitutes one of

the most hnportant and widespread application areas for the field of control

engineering. In spite of a long history of successful industrial applications,

dating back at least to the early 1940's, the fundamental scientific/theoretical

aspects of pointing and Wacking control problems are still not well-understood

owing to the uncertain nature of several features of those problems. In

particular, the time-varying pointing/tracking commands associated with such

problems are typically not known a priori, but are only revealed on-line, in a

real-time manner. Moreover, the internal and external disturbances that

degrade the performance of pointing and tracking control systems are
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inherently uncertain in nature and typically cannot be directly measured in

real-time. These uncertainty features induce subtle performance limitations to

the "solutions" of pointing and tracking control problems. The scientific

aspects of those limitations have received very little attention in the literature.

In this Chapter we examine the information-theoretic nature of the

uncertainties inherent in pointing and tracking control problems, and identify

the theoretical performance limitations induced by those uncertainties. It is

shown that a novel "waveform model" representation of pointing/tracking

commands, and of internal/external disturbance actions, offers the most

effective rational

limitations.

2. POINTING

CONCEPTS

means of coping with those inherent performance

AND TRACKING PROBLEMS; FUNDAMENTAL

The scientific consideration of pointing and tracking control problems

necessitates a precise description of the essential conceptual features of the

class of pointing and tracking problems to be considered. For this purpose

we propose the (abstract) definitions given below. In both definitions, the

dynamical system S being controlled is understood to consist of some

physical hardware device (i.e. electro-mechanical-optical, etc.) that has a

known, reliable mathematical model, a finite-dimensional state vector

x=(x_,...,x,), r distinct control inputs u=( u,,u=,...,u, ) (i.e. control

motors, torquers, linear actuators, etc.) and p distinct disturbance inputs

{wl(t),w2(t),...,wp(t)} (i.e. wind gusts, target motions, coulomb fi-ictions,

structural distortions, flex-body vibrations, etc.). The outputs {y_,y_,...,y,} of

S consists of those features of S (positions, rates, accelerations, etc.) that

can be measured by available sensors, in real-time.

UAH / ECE Dept. / Dr. C. D. Johnson 2-2 Chapter 2, Final Report



DesignofaNewHigh-PerformancePointingControllerfor theHubbleSpaceTehua:ope
N_/D. O.49

Definition of the Pointing Control Problem - For purposes of this Chapter,

the pointing control problem for a dynamical system S is understood to

consist of the analytical design of the vector u(.) of control inputs

u = ( u,,u2,-..,u, ) such that each of certain designated outputs y,(t) of S is

forced to promptly attain, and steadfastly remain at, a specified constant

value (given set-point value) y,,_ in the face of an "arbitrary" initial-state

x(to) of S and any transient or persistent vector w of disturbance-actions

w(t)=(wl(t),w2(t),".,wp(t)) thatare likely to act on S. Generally speaking,

the "constant" set-point values y,_, may abruptly change to some new

constant value from time-to-time in an unknown, stepwise-constant manner.

There are, of course, special applications of pointing control systems

where it is required to "point" y, (0 at one and only one, specific set-point

y,_ , and therefore sudden, unexpected jumps in y,_ do not occur. To

maintain the generality of our comments and characterizations we will

hereafter disregard such special, restricted cases.

Definition of the Tracking Control Problem - The tracking control problem

for S consists of the analytical design of the vector of control inputs

u = ( u,, u2,..., u, ) such that each one of certain designated outputs y, (t) of S

is forced to promptly coincide-with and thereafter faithfully follow (track with

high-fidelity) an associated time-varying command input y,.c(t), in the face of

an "arbitrary" initial-state X(to) of S and any transient or persistent vector

w(t) of disturbance actions w(t)=(w, (t),w2(t),...,wp(t)) that are likely to act

on S.

It is clear from these definitions that the general pointing problem is a

special case of the tracking problem in which the time-varying "tracking-

commands" y,.o(t) become constant (set-point) commands y,._.
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3. FUNDAMENTAL LIMITATIONS IN POINTING AND TRACKING

PROBLEMS: INFORMA TION- THEORETIC ISSUES

The primary sources of uncertainty, in the pointing and tracking problems

defined above, lie in: (i) the ways the set'point/tracking commands {y_.,_(t) ,

y,.c(t)} and the disturbance inputs {wj(t)} naturally evolve in time and (ii)

the way in which a pointing/tracking control system becomes aware of, and

responds to, set-point/tracking commands and to the presence and nature of a

disturbance input wj (t).

3.1 Time-Evolution of Pointing/Tracking Commands

In regard to the time-evolution of the set-point/tracking commands, it is

typically the case that the time-behavior of {y,._,(t), y,.c(t)}, are not known to

the control designer apriorL Moreover, the values of y,_(t) and y,.c(t) at

time t are not known to the controller until time t. In fact, the underlying

exogenous physical processes that determine how y,._,(t) and y,.o(t) evolve

in time are typically such that at time t the future behavior of y,.,,(T),

y,.c(r), r> t , is not only not known, it is no_Atdeterminable! This latter fact

is rather subtle and warrants further elaboration. Some typical time-plots of

set-point and tracking commands, representing an after-the-fact recording of

data, are shown in Figure 1. The distinguishing feature of each plot, fi'om our

perspective, is that y,.,,(t) and y,.o(t) have a smooth, well-behaved waveform

pattern (trace) exc.q_ at a few isolated random-like "transition times" t,

where an abrupt change occurs in either the value of ( y,._(t), y,.o(t)) and/or

the value of some derivative of y,.c(t). Between any two successive transition

times t,, t,+, the plot of y,.o(t) continues to be smooth and well-behaved,

although not necessarily exhibiting the same pattern of behavior between each

such pair of transition times.
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Co) - Plot of Typical Tracking Command y,.,(t)

Figure 1 Plot of Typical Pointing/Tracking Commands y,.v(t), y,.c(t)
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If y,.v(t,+ e) isknown, fora sufficientlysmall 6 > 0 then clearlythe

behaviorofa set-pointcommand y,._(t)isaccuratelypredictablebetween

any two successive transition-times t, ,t,+, However, this seemingly

deterministic character of y,._,(t) is deceiving because the transition times

t, ,t,+_... themselves are determined by complex exogenous factors that are

(typically) not quantifiable, a priori, and thus are inherently unknown,

unpredictable and, in fact, are indeterminable, a priori. Therefore it is

(typically) impossible to know or predict y,.,p(t) beyond the (unknown)

"next" transition time t,+_.

A similar remark applies to tracking commands y,.o(t) Between any

two successive transition times ti, ti+_ the behavior of y,.c(t) is

conceptually predictable, at least over short sub-intervals of (t, ,t,+_) ,

fi'om knowledge of an initial record of y,.c(r) over a small interval t,

<r<(t_ + c),s=small >0, since y,.c(t) and its' derivatives d ky_.c(t)/dt k, k = 1,2,---,

are all continuousin the open interval t, < t < t,+_ . For instance, in that

case one can argue that at each t a Taylor-series expansion of y,.o(t)

should yield a non-zero sub-interval of convergence within the interval t, < t

< ti+l

The foregoing observations lead us to postulate the following prototype

characterization of the class of realistic pointing commands y,.,_(t) and

tracking commands y,.o(t) most often encountered in industrial applications.

Prototype Characteri;ation of T_aical Pointing and Tracking Commands-

The time-histories of typical pointing and tracking commands, illustrated in

Figure 1, are characterized by a finite number of sequential, open, (not

necessarily even), unknown intervals of time t, < t < t,+, , i = 0,1,2,---,

within which the functions y,.,_(t) , y,._(t) and their derivatives, vary in a

UAH / ECE Dept. / Dr. C. D. Johnson 2-6 Chapter 2, Final Report



Design of a New High-Performance Pointing Controller for the Hubble Space Telescope
NAS8-386091D. O. 49

smooth, well-defined

values of the functions

derivatives, experience

unpredictable, a priori.

manner. At the (unknown) times t=( t,, t,+1 ) the

y_,o,(t),yi,c(t) , and/or one or more of their time-

simple jumps whose values are unknown and

There are, undoubtedly, some exceptional cases one can cite in which it

can be argued that this prototype characterization is not appropriate.

However, we feel confident that this characterization is appropriate for the

vast majority of real-life industrial applications involving pointing and

Waeking commands.

Comparison with Random Process Characterizations - Some control

engineers and signal-processing specialists, tend to view any signal that is no__At

completely determinable (and completely known) as a "random" signal that

can only be characterized by its (long-term) mean-value, variance, and other

(higher) moments, as used in random process theories. Thus it is instructive

to compare our prototype characterization of typical pointing and tracking

commands given above to the stochastic characterization of random

processes.

The conceptual "signals" referred to

"white-noise" or "colored white-noise"

in random-process theories as

[1] are mathematical constructs

involving fictitious signals whose "values" go from "+oo to -_o" on every

(arbitrarily small) positive interval of lime. In particular, the Bode-Shannon

realization of mathematical white noise consists of a densely populated time-

sequence of Dirac-impulses having completely random arrival times and

intensities, where the time-interval _ between any two successive impulse

arrivals is arbitrarily small. Clearly, such a "signal" cannot have any

waveform characteristics and, in fact, cannot exist physically. Moreover, ff
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such a signal is imagined to be fed into (input into) a physically existing

linear dynamical system (a linear "coloring filter") the output response y(t)

of that system (called "colored noise") will be devoid of any distinguishable

waveform characteristics, since then some higher derivative of y(t) will

always involve a "white noise" component. For instance, if one imagines the

"coloring filter" to consist simply of a pure integrator so that

y(t) = ft'. (white noise)dr

the response y(t) [called a Brownian or Wiener process] has no discernible

waveform characteristics because its (formal) "derivative" dy/dt is a densely

populated sequence of randomly-arriving, random-intensity impulses (i.e.

white-noise).

It follows from these remarks that if, in the design of a tracking control

system, the uncertain tracking commands y,,,(t) are viewed (mathematically

modeled) as "white-noise", or some colored hue of white-noise, the

possibility of the design process accommodating any inherent waveform

patterns that may characterize the actual physical commands y,.,(t) is lost

forever. In particular, if one only models or specifies the long-term average

statistical mean and variance (or power-spectral density) of y,.c(t) in

designing a tracking control system, one is (over)designing for an imagined

class of commands {y,.c(t)} that includes outrageously rough, wildly-varying,

continuously un-differentiable functions y,.c(t) that would never occur in the

actual physical application. Moreover, the long-term average statistical

characterizations of mean, variance, power-spectral density, of y,.o(t) etc.

may be completely irrelevant to the required short-term tracking performance

of, say, a missile seeker tracking a maneuvering target. Such short-term

tracking performance requirements demand that the seeker control system
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react to the instantaneous waveform-pattem behavior actually exhibited by

the target motions at each moment of time t --and such real-time waveform

behavior information is never reflected in the long-term averages of mean,

variance, etc. of target motions. The latter consideration is a manifestation of

the old statistical joke about a person drowning while crossing a wide, placid

stream whose average depth is 2 era.

In summary, high-performance tracking control systems operating in

disturbance environments require real-time information about the

instantaneous waveform characteristics of the particular tracking command

y,.o(t), and of the particular disturbance input w_(t) acting at each moment of

time t. Statistical characterizations of long-term average mean, variance,

power-spectral density, etc. do not (and cannot) provide such real-time

waveform behavior information about tracking commands and disturbances.

3.2 Characteri_ation of Disturbances - The various disturbances wj(t)

that can act on the dynamical systems 5' involved in pointing and tracking

control problems are almost always uncertain in nature and not accessible for

direct measurement in real-time. Those disturbances arise fi'om a variety of

physical sources, some of which produce very erratic and capricious

disturbance behavior. For example, fluid turbulence, radio-static, and similar

"noisy" sources. Such disturbances have tittle, if any, discernible waveform

characteristics and therefore, as a practical matter, can only be represented in

terms of their averaged statistical properties. Thus, pointing and tracking

control systems designed to cope with such noisy uncertain disturbances can

only do so in a long-term averaged sense, such as minimizing the long-term

average of the mean and/or the variance of the disturbance's effects on S

The design of such "good-on-the-average" controllers is addressed in the
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subject of Stochastic Optimal Control Theory [2] and will not be further

considered here.

Fortunately, the vast majority of uncertain disturbances wj(t) that arise in

realistic pointing and tracking problems are associated with physical sources

that are no__._t"noisy" in the sense of the preceding paragraph. Some common

examples of such uncertain disturbances are: coulomb friction and "stietion"

effects, vibrations due to equipment motions, structural flexibility effects, out-

of-balance and off-center effects, gyroscopic precession effects, gravity-

gradient effects, crew motions, solar pressure effects, etc. In missile guidance

problems the target's evasive maneuvers Oinking) appear as external

"disturbances" in the guidance "error" equations. The time-history plots of

such disturbances typically appear as shown in Figure 2, where it can be seen

that, even though wi(t) is uncertain and unpredictable, the time behavior of

wj(t) tends to be smooth and well-behaved except at a few isolated,

randomly occurring moments of time t, where the values of wj(t) and/or

some of the higher time-derivatives dkwj/dr k , k = 1,2,3,.--, experience simple

random-like jumps. In other words, the inherent uncertainty of such

disturbances does not prevent them _om being characterized in terms of

certain trends or patterns of waveform behavior they naturally tend to exhibit-

-between successive transition times (t,,t,+l) . This feature of disturbances

wj(t) is recognized as being generically the same as that previously

established for typical pointing and tracking commands; see Figure 1. Thus

we are led to the following characterization.

Prototype Characteri_ation of TFpical Non-Nais F Disturbances in Pointing

and Tracking Problems - The typical non-noisy disturbances {%.(0}

encountered in pointing and tracking problems are not known a priori, not
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Figure 2 - Plot of Typical Disturbance Input w:(t)
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predictable, and not directly measurable. However the time behavior of each

wj(t) is characterized by a sequence of unknown, finite, open time-intervals

during which wj(t) and its derivatives are smooth, weU-behaved functions of

time. At the (unknown) ends of those time-intervals the value of w:(t) ,

and/or certain of the higher time-derivatives of w/if), experience

unpredictable, simple, random-like jumps.

This completes our discussion of how typical set-point commands

y,._,(t), tracking commands y,.c(t) and disturbances w/if) naturally evolve

in lime. In the next section we will examine the performance consequences

of the particular way in which pointing/tracking control systems become

aware of, and respond to, pointing/tracking commands and the presence of

disturbances.

3.3 Poineelle's Principle in Pointing and TracMng Control Problems -

From the information-theoretic viewpoint, one of the primary contributors to

performance limitations in pointing and tracking control problems is the fact

that real-time changes which occur in the values of set-points or tracking

commands at time t are not revealed to the control system unti_.._[1time t.

Moreover, if some tracking command derivative dkyi.c(t)/dt k , k=l,2,...,

abruptly changes at time t, the tracking control system typically will not

become fully aware of, and properly react to, that derivative change until

some elapsed-time after t, (here we are disregarding the unusual case in

which y,.o(t) and all of its time-derivatives can be accurately and directly

measured in real-time). For example, if the value of dy,.o(t)/dt abruptly

changes at time t, a "type-2" (double-integral) tracking control system will

not become fully aware of, and properly react to, that derivative change until

the resulting growth in the tracking error
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e,(t)- y,.c(t)- y,(t) (1)

has persisted for some (small) time-interval. Consequently, a momentary

build-up of tracking-error (1) is necessary to initiate the proper controller

response in such a situation. A typical time-plot iLlustrating this behavior is

shown in Figure 3.

The general fact that in a feedback control system some momentary build-

up of error (1) is necessary to trigger the proper control response is known

as Poincelle's Principle. This principle serves to establish a limit on the

quality of tracking fidelity that can be achieved in tracking problems with

realistic, uncertain tracking commands of the type we are considering here.

Poincelle's Principle also applies to the effect of uncertain, unmeasurable

disturbances wj(t) associated with pointing and tracking problems. In

particular, the only way a pointing/tracking control system can become aware

of, and properly react to, the presence of such disturbances is by virtue of the

system output deviations (response errors) caused by those disturbances.

Thus, some momentary build-up of pointing/tracking error (1) is necessary to

trigger the proper control response to an unknown, unmeasurable disturbance.

The only way one can overcome the pointing/tracking performance

limitations imposed by Poineelle's Principle is for the controller to have

complete a priori knowledge of precisely how the "future" pointing and

tracking commands {y_._,(t),yi.c(t)} and disturbances {wi(t)} will vary

with time, over the entire interval to < t < T of the pointing/tracking control

problem. We have already indicated that it is not realistic to expect such a

priori information to be available in industrial pointing and tracking

problems. However, it is interesting and instructive to consider how one
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Figure 3 - Showing Momentary Build-Up of Tracking Error When

Derivative of Tracking Command Suddenly Changes

UAH / ECE Dept. / Dr. C. D. Johnson 2-14 Chapter 2, Final Report



Design of a New High-Performance Pointing Controller for the Hubble Space Telescope
NAS8-38609/D. O. 49

would design the "optimum" pointing/tracking control system for such an

idealistic case. This subject is addressed in the next section.

4.0 KALMAN'S THEORY FOR ABSOLUTE OPTIMAL CONTROL IN

POINTING AND TRACKING PROBLEMS

The performance limitations imposed by Poincelle's Principle are a fact-

of-life in virtually all realistic pointing/tracking problems. Nevertheless, it is

interesting to investigate (theoretically) the nature of the optimum control

system, and the degree of enhanced performance that would accrue, if in the

formulation of a pointing/tracking control problem one could hypothetically

have complete a priori information on precisely how the pointing/tracking

commands and disturbances will vary with time over the entire future interval

of control. Such a hypothetical problem was posed and solved by Kalman in

a highly original 1963 paper [3]. In this section, we will summarize the

essential features of Kalman's problem formulation and solution.

4.1 Kalman's Pointing/Tracking Problem - The general pointing/tracking

problem (called "servomechanism" problem) with disturbances, considered by

Kalman in [3], was formulated for a very general class of multi-input/multi-

output, possibly time-varying, linear dynamical systems S having the generic

state-model [the symbols used below in (2) have been altered from those used

in [3] to conform to current-day usage]

S: fx= A(t)x+B(t)u+F(t)w(t); X(to)=X o (2a,b)
_y=C(t)x

where x=(x_,...,x=), u= (u_,...,u,), w=(wl,...,w,)and Y=(Yl,"',Y=) • The overall

pointing/tracking performance in Kalman's problem was measured by the (still

popular) "error-quadratic/control-quadratic" performance criterion J" defined

by the functional
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T

J[u] = er (T)Se(T)+ f [e r (t)Q(t)e(t)+ u r (t)R(t)u(t)]dt (3a)
to

e = (el ,..., e,,) ; ei -defined by (1), (3b)

where the error/control weighting matrices {S,Q,R } are assumed symmetric

and positive-definite for all t , and [ to, T ] denotes the specified time-

interval over which the pointing/tracking control problem is defined. The

problem is to find the control input U=(U_,"',Ur) to the dynamic system (2)

that minimizes (3) for an apriori known pointing/tracking command input

y¢(t)=(y_o(t),...,ym.c(t)), to <t<T (4)

and an a priori known disturbance input

w(t)=(wl(t),...,w_(t)), to <t<T. (5)

4.2 Kalman's Solution - Kalman's solution to the optimum

pointing/tracking control problem (2)-(5), with perfect knowledge of the

"future," consists of the linear state-feedback eontroMaw

u° (t) = -R-' (t)B r (t)[P(t)x- h(t)] (6a)

where the time-varying, symmetric positive-definite gain-matrix P(t) and the

vector h(t) are determined, and stored for future use, by reverse-time solution

[i.e. integration from t = Z to t =to] of the following matric Riccati

differential equation

P(t)=-PA- Arp + PBR-1Brp-crQc ; P(T)=CrSC (6b)

and the coupled vector-matric differential equation

h(t) = (-A + BR-IBrp)r h + PFw(t)-CrQyc (t) ; h(T) = CrSyo (T). (6e)

From our perspective, the most significant feature of Kalman's solution (6) is

the fact that to carry-out the reverse-time solution of (6c), from t = T to

t = to , requires complete a priori knowledge of Yo(t) and w(t), over

to_<t_<T . In other words, after integrating (6) in reverse-time, at each t in

forward-time playback (real-time use), the function h(t) in the optimal control
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law (6a) has embodied in it the optimal anticipatory control response that

takes into account the (known) entire future behavior of yo (r) and w(r),

t_<_r_<T . Thus, for example, if the tracking command or disturbance will

have an abrupt jump in value at some "future time" to <t_<T, the "all

knowing" optimal control uo(t) in (6) "knows" that fact at the time t = to

and will begin optimally reacting to that future jump even before the jump

occurs! Accordingly, we will hereafter refer to (6) as the absolute optimal

control for the pointing/tracking control problem (2)-(5).

The value of J = Jo in (3) associated with a given initial state X(to) of

S in (2), and corresponding to use of the absolute optimal control (6) as the

input tothe dynamic system (2), is the absolute minimal value of a

achievable by any pointing/tracking control system, assuming the same

X(to), yc(t) and w(t), to<t<_T . Kalnlan showed, in [3], that dO can be

expressed as the sum of three terms:

jo = xr (to)P(to)X(to)_2xr (to)h (to)+ O(to) (Ta)

where the scalar o(t) is computed by solving, in reverse-time, the auxiliary

scalar differential equation

b(t)=-y T (t)Qyc(t)+h r (t)B(t)R--l(t)Br(t)h(t)+2hr(t)Fw(t); (7b)

with the "initial condition"

u(T)= yr_(T)Syc (T) (7c)

The availability of ao enables one to explicitly compare the performance

measure (3) for any practical pointing/tracking control system with the

idealistic optimum performance (7a) hypothetically obtainable if one could

have complete future knowledge of Yc(t), w(t) , a priori. In this way the

fundamental performance limitations on (3), due to the practical inability to

know the future behavior of yc (t) and w(t), can be rigorously quantified and
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precisely measured for any candidate, physically realizable pointing/tracking

control system. Although Kalman's solution was developed for the specific

quadratic-type performance measure (3), his solution methodology can be

applied to other pointing/tracking performance measures J, with similar

results and conclusions; see [4], [5].

4.3 Apparent Failure of Bellman's Principle of Optimalitg - One of the

cornerstones of modem optimal control theory for dynamical systems S is

the assertion that the optimal control uo(t) at time t can always be

expressed as a function of t and the system's state x at time t. In other

words

u°(t)=F(x(t),t) , to<t<_T. (8)

for some unknown function F (., -) which is to be found by the analytical

procedures of optimal control theory; see [6], [7].

Bellman popularized this assertion by elevating it to the status of a

"principle" [8], which he called The Principle of Optimality. That principle

can be paraphrased as follows: The optimal control at the present time t

depends not on how the system S got into its present state x(t), but only on

t and the value of the present state x(t) itself. In other words, the present

state x(t) embodies all of the "past" that is optimizationally relevant to

determining the optimal control at the present time t.

A comparison of (6a) with (8) would seem to confirm Bellman's Principle

of Optimality for the optimal pointing/tracking problem (2)-(5). However,

when one realiyes that the function h(t) in (6a) cannot be determined from the

"present" data ( x(t),t ), but rather must be determined from the future

behavior of yc(r) and w(r), t<_r<_T , it appears that the Principle of
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Optimality fails in the case of pointing/tracking problems [note that the term

P(t) in (6a) does not induce this characteristic].

In the next section of this Chapter we will show how the introduction of

waveform-models, and associated state-models for uncertain

pointing/tracking commands y,.c(t) and uncertain disturbances w/(t) enables

the restoration of applicability of the Principle of Optimality to

pointing/tracking control problems--at the expense of a higher-dimension

state-vector and some inevitable loss of performance compared to the

hypothetical, idealistic absolute optimal performance (7a).

5. WA VEFORM-MODELS, STATE-MODELS, STA TE-OBSER VERS

AND A FUNDAMENTAL PRINCIPLE FOR ACCOMMODATING

UNCERTAIN COMMANDS AND DISTURBANCES

The effective solution of pointing and tracking control problems has

traditionally been hampered by the lack of mathematical models that can

effectively represent the kind of (non-noisy) uncertain pointing/tracking

commands and disturbances encountered in realistic applications, i.e. model

the prototype characterizations of commands and disturbances given earlier in

Sections 3.1 and 3.2. In this section we will describe a relatively new form of

mathematical model that is effective in representing those prototype

characterizations of uncertain commands and disturbances.

5.1 Waveform Models - The essential mathematical feature of the

command and disturbance prototype characterizations given in Sections 3.1,

3.2 is that they are "analytic" between any two consecutive transition-times

(t,,ti+l). An effective representation model of such functions is [here we use
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the signal

to .,;(t)]

y,.o(t) to demonstrate the ideas involved; analogous results apply

y,.o(t) = C,,f,, (t) + C,j,_ (t) +... + C,._f,,_ (t) (9)

where the {C_,,...,C,_} are totally unknown "constants" that are allowed to

jump in value (at the transition times t,) in an unknown, once-in-a-while

manner as shown in Figure4 and the are completely

known, smooth, well-behaved, analytic time-functions called "basis

functions." The representation (9) is a generalized "spline-model" for the

uncertain signal y,.c(t) and can be compared to similar representations used

across spatial domains in "finite-element" techniques [9]. In practice the

basis functions f,j(t) are chosen by the pointing/tracking designer to reflect

the variety of waveform behavior patterns actually exhibited by typical

commands y,.o(t). Thus, if the tracking command y,.¢(t) typically looks like

that shown in Figure 5 the corresponding spline-model (9) would be chosen

as

y,.¢(t)=C n+C_2e -3t ; i.e. ft,(t)= 1; f2(t)=e-3t (10)

Likewise, if an uncertain disturbance wj (t) typically looks like that shown in

Figure 6 its spline-model representation (9) would be chosen as

wj(t) = Cla e -2' sin(3t)+ q2 e-2' cos(3t) + Cj3 (1 la)

fjt(t)=e-2'sin(3t); fj2(t)=e-2'cos(3t); fj3(t)=l (llb)

In some cases the typical waveform behavior of y,.o(t) (and/or wj (t)) is

simply an uncertain, irregular meandering back-and-forth motion as shown in

Figure 7. For such cases, the appropriate representation (9) is a "polynomial-

spline" of the form

y_._(t)=C_ +C_:t + C_3t2 +-.-C,, t (m'-_) (12)
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Figure 4 - Stepwise-Constant Behavior of Weighting

Coefficients G1 in Waveform Model (9)

UAH / ECE Dept. / Dr. C. D. Johnson 2-21 Chapter 2, Final Report



Design of a New High-Performance Pointing Controller for the Hubble Space Telescope
N_/D. O. 49

Figure 5 - Plot of Tracking Command (10)

-2÷

"¢"_-L"eZc°sPz_') Figure 6 - Plot ofD,sturbance (lla)

'Figure 7 - Plot of Uncertain Meandering Tracking Command that is

Appropriately Represented by the Polynomial Splme Model (12)
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where the value of in, = 1,2,3,-.- is chosen large enough to reflect the degree of

back-and-forth motion exhibited by y,.o(t) ; typically _ <4 iS satisfactory

for industrial applications. Note that the case mi = 1 in (12) is the appropriate

model for representing unknown, stepwise-eonstant pointing commands

y,._,(t). In (9)'(12) the unknown jumping of the "constants" C,j at the

(unknown) transition times t, serves to represent the unknown jumping of

y,.c(t), wj(t), and/or some of their time-derivatives, at those times.

Tracking commands and disturbances that admit a representation of the

type (9) are said to posses "waveform-strueture," and the representation (9)

itself is known as a "waveform model." These concepts were introduced into

the design of high-performance "disturbance control" systems in a series of

papers beginning in 1968 [10]-[15]. The "information" encoded into the

waveform model (9) is clearly non-statistical and is precisely the kind of

dynamic, real-time command/disturbance waveform information needed in a

pointing/tracking control problem to achieve maximum, physically realizable

performance.

5.2 Dynamic Models - In order for a pointing/tracking controller to access

the information encoded into (9) it is necessary to re-format that information

by converting the waveform-model (9) to an associated "dynamic-model",

which is simply a homogeneous differential equation that (9) satisfies (for

strictly constant, non-zero C,; ). For this purpose one should seek the lowest-

order of such an equation and, for mathematical convenience, it is prudent to

select the set of basis functions {f_j (t)} in (9) from among those that satisfy

some linear (possibly time-varying) differential equation. Actually, it turns-

out that for industrial applications it is usually adequate to choose basis

UAH / ECE Dept. / Dr. C. D. Johnson 2-23 Chapter 2, Final Report



Designof• NewHigh-PerformancePointingControllerfortheHubbleSpaceTelescope
NAS8-38609/ D. 13.49

)

functions f,j (t) in (9) that satisfy a constant-coefficient linear differential

equation. In the latter case one obtains a "dynamic-model" for (9) in the form

dqyt.c(t)ldt _ +p_dq-_yi.c(t)/dt*-_+...+fl_lyi.c(t)/dt +fl_yi.c(t)=O (13)

where the constant coefficients {B_,f12,...,,6_ }, and the order "o," of (13), are

completely independent of the C,_ in (9) and are precisely determined by the

chosen basis-functions {f,,(t),...,f,,,(t)) in (9). For example, in the ease of

(10 ) the associated dynamic-model (13 ) is

y,.c+3p,._=o ; ( )=d( )/dr (14)

In the case (11 a) the dynamic-model (13 ) is

ii,; +4#, + 13_/,, =0 (15)

The polynomial-spline waveform-model (12) leads to the _ order

dynamic-model

d_y,.c(t)/dt"_ =0 (16)

It is remarked that in some cases of multi-variable coordinated tracking

commands yo = (y,o,-..,y,_) (or multi-variable interacting disturbances) it may

ram-out that the dynamic-model analogous to (13) consists of a coupled set of

differential equations of the type (14)-(16). Note that (14)-(16) do not allow

for (account for) the permitted, random-like, unknown once-in-a-while

jumping of the weighting "constants" C_j in (10)-(12). This deficiency will be

corrected in the next subsection by introducing (symbolically) sparse

sequences of unknown Dirac impulses as forcing functions in the "state-

models" corresponding to (14)-(16).

5.3 State-Models - The final step in converting (13) for use by a

pointing/tracking control system consists of re-formatting each of (13) into an

equivalent set of first-order (state-variable type) differential equations. Thus,

for instance, by defining the "tracking command state-variables" for each
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independent y,._(t) as:

Command State-Variables do = (c,,_,..., q.,,,)
(_-D

% =Y,.c;q.,=.P,.o;---q.o,= Y,._ (17)

the most general state-variable equation for a set of possibly coupled dynamic

equations of the type (13) can be written as [12; p. 640]
m

y_= [G](c) ; c=coL(c_1'l...d'_)=coL(q,...,cD;v= Z v, (15a)

(O=[E](c)+/_(t); /_= col.(/_,---,pD (18b)

where (G,E) are,respectively,mxv and vxv matricesthatcan be chosen

from a familyof canonical,completelyobservablepairs;see [12;p. 643].

The /_,(t)in(18b) denotesparsesequencesof unknown Dirac impulsesthat

accountforthe random, once-in-a-whilejumps thatmay occur in the Cj in

(9). In a likemanner, one can define"disturbancestate-variables"for each

independent%(t)as:

Disturbance State-Variables zc° = (z,.l,---,z,._)
0_-i)

z,.l=w, ; z,_ =_, ;...;z,._= w, (19)

to obtain the following general state-variable equation for a set of (possibly

coupled or coordinated) multi-variable disturbances w = (w_,...,%)
P

- O)(,,,)-[H](=); I...l=<,")-,:oZ.O,,...,=,,);p--X,o, (2oa)

(i)=[D](z)+cr(t) ; cr=col.(crl,...,crp) (20b)

where, as in (18), the pair of matrices (H,D) can be chosen from a family of

canonical, completely-observable pairs as explained in [13; pp. 405, 417] and

the _(t) in (20b) denote sparse sequences of unknown Dirac impulses that

account for the random, once-in-a-while jumping of the C,j that may occur in

the disturbance counterpart of expression (9), corresponding to the waveform

model of %(0. A more general version of (20) is given later in (32).

The particular choices (17), (19) of command and disturbance state-
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variables are the most natural and convenient choices. However, as is well-

known in the "state-theory" for dynamical systems, there are many other

choices for state-variables that are equally valid [16; p. 170 ]mand some that

are not valid; see [17 ]-[20]. The basis functions {f,j}, corresponding to the

waveform models ofyi.c(t), wj(t) appear in (18), (19) as the eigenmodes of the

matrices E,D respectfully. For instance, in the case of m independent

stepwise-coustant pointing commands y,._(t), which have only the on_.__ebasis-

function f,.,(0=l each, one obtains E=O, G=I, v=m in (18). Note that it

is not required that (E, D) be stable in order that (18), (20) model realistic

commands and disturbances; i.e., see (12), (16).

It should be emphasized that, with the exception of the unknown, sparse,

(symbolic) impulse-sequences /_(t), o(t) that have been added, the state-

models (18), (20) are precisely the same as (and contain precisely the same

"information" as) the dynamic model (13) and the disturbance counterpart of

(13) (not shown). The virtue of the alternative format (18), (20) lies in the

explicit recognition of y,.o(t), wj(t), and their time-derivatives, as individual,

independent state-variables {c,.j, z,j} and in the fact that the existing theory

of "state-observers" [Kalman filters], which we will be using in the sequel to

estimate those state-variables in real-time, is formulated for general state-

variable models of the type (18), (20). The assumption that the unknown

impulse sequences/_(t), _(t) in (18), (20) are sparsely populated is critical

to the existence of waveform structure for yi,c(t) and wj(t), respectively. In

particular, as the impulses in the sequences/_(t), _.(t) become more densely

populated (time-spacing between successive impulse arrivals approaches

zero) the sequences /_(t), _(t)begin to behave like the Bode-Shannon

"white-noise" described in Section 3.1 with the result that y,.o(t), wj(0 in (18),
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(20) lose all their waveform structure and (in those cases where E,D in (18),

(20) happen to be stable matrices) begin to behave like conventional

"colored-noises" of random process theory.

5.4 A Fundamental Principle [or UneertainO, Accommodation in

Pointing�Tracking Control Problems - The introduction in (17), (18) and in

(19), (20) of the overall pointing/tracking command state c = (q,c2,...,co) and

overall disturbance state z = (zz,z2,...,zp) is the key technical idea that allows

practical realization of a pointing/tracking control system which achieves as

near absolute optimal performance levels as is physically, rationally possible.

This result, referred to as the Principle of Optimal Disturbance

Accommodation in [4], can be re-stated for the class of pointing/tracking

control problems considered here as follows.

The Command/Disturbance Uncertaintv Accommodation

Principle for Pointing�Tracking Control Problems

Suppose the commands {y,.o(t)} and disturbances {%-(0 } have

known waveform-structures and state models in the sense of

(9), (18), (20). Then, for a broad class of pointing/tracking

performance measures J , and given dynamic systems S, the

current values of the "states" {x(t), c(t), z(t)} embody sufficient

real-time "information" about S and the uncertain dynamic

behavior of {y,.o(t)} and {w,(t) } to allow a rational, physically

realizable, scientific "optimal" choice for the real-time control

input u(t)-- even though the future behavior of y_.o(t), wj(t) is

not predictable at the time t.
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The rationale for this principle is as follows. The state models for

x(t), c(t), z(t) are entirely deterministic and known, except for the sparse

sequences _ (t),/_,(t) of unknown impulses which cause corresponding, once-

in-a-while, jumps in (c(t), z(t)). Since the sparse random-like arrival-times

and random-like intensifies characterizing those impulse sequences are totall3_

unknown (have no statistical structure), there is no rational, scientific method

for anticipating, and reacting a priori to, their jump effect on (c(t), z(t)) in an

optimization problem. Thus, the "optimum" physically realizable, rational

control strategy for such a situation is to choose u(t), at each t, to optimally

react to the "current" values of x(t), c(t), z(t) as ff there will be no further

jumps in c(t), z(t) in the future. This policy is equivalent to ignoring the

presence of the _(t),/_,(t) impulses altogether, and can be viewed as a

pseudo-restoration of Bellman's Principle of Optimality for pointing/tracking

problems, in the extended (x,c,z)-state space. Of course, the ignored future

jumps that will invariably and repeatedly occur in c(t), z(t) do, in fact, affect

the absolute optimal choice of u(t), at each t. Thus our "optimum" physically

realizable, rational control strategy, based on current values of x(t), c(t), z(t)

o_.._.y.,does not preclude the possibility of attaining "better-than-optimal" [but

never better than absolute optimal!] performance by non-rational methods

such as by fortuitous guessing about [gambler's luck, speculating on] the

future impulse arrival times and their intensities. However such gambling in

function spaces carries high risks with low probabilities of success and is

definitely not recommended for precision pointing and tracking problems.

The "command/disturbance uncertainty accommodation principle" forms

the foundation for the practical design of a new class of high-performance

pointing/tracking control systems which must cope with uncertain tracking
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commands and disturbances having the prototype characterizations defined in

sections 3.1, 3.2 and illustrated in Figs. 1-3. That design procedure will be

outlined in Section 6. First, however, we need to indicate just how the states

x(t), c(t) and z(t) can be accurately estimated in real-time.

5.5 State-Observers (Kalman Filters) for Estimation of (x(th c(t), z(t_ in

Real-Time - According to the uncertainty accommodation principle for

commands and disturbances, as stated in the previous section, optimal

pointing/tracking control laws u° = .T(--.) should be sought in the extended-

state feedback/feedforward format [compare with (8)]

uo = if7 (x(t),c(t),z(t),t). (21)

Thus, in addition to designing the "optimal" function f(...) in (21) it is

necessary to develop a practical means of generating accurate estimates

_(t),_(t),_(t) of the three state vectors x(t),c(t),z(t), in real-time. Fortunately,

an effective means for accomplishing this latter task is provided by the

existing Kalman Filtering Theory in the form of what is generically called a

"state-observer." In this section, we briefly summarize the methodology

whereby such state-observers can be designed to produce accurate real-time

estimates _(t),_(t),J(t). We will focus attention here on the simplified cases

where the pointing/tracking commands y,._,(t),y,.c(t), and outputs Yl,"',Y, of S,

can be measured with negligible "sensor-noise". Otherwise one should use

state-observers based on the full Kalman Filtering Theory, [21].

Observation of the Pointin_ Command State c = (c,,c2,...,cv) - As indicated

near the end of section 5.3, the state-variables c, corresponding to a given,

stepwise-constant pointing command y,p = (YI._,Y2._,'",Y,._) are m in number

(o= m) and are defined simply as

q =y_.,_ ; c2 =y2._, ,'"; c,, =y,_ (22)
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Thus, in the special case of stepwise-constant pointing-commands, no

command-state observer is required because the direct real-time measurement

of the m signals y,.,p(t) constitutes a direct, real-time "observation"

(measurement) of the associated command state c = (q,..., c=).

State-Observers for the Tracking, Command State c=(c,,%...,co) -

Assuming that yo(t) is not a stepwise-constant command, as just discussed,

and that an appropriate command state-model (18) has been developed, an

accurate real-time estimate _(t) of the command state c(t) can be generated

[between arrivals of the/_,-impulses in (18b)] from real-time measurements of

data-processingthe m-vector yc(t) by the following (continuous-time)

algorithm (full-order state-observer)

_(t)= E_.-Ko[Yc(t)-G_ ] (23)

where the o x m "observer gain-matrix" Ko is chosen by the designer to assure

prompt decay to zero of the state estimation error

ec(t)=c(t)-O(t) (24)

between successive arrivals of the unknown impulses/_,(t) in (18b). It is easy

to show that e=(t) in (24) is governed by the homogeneous linear equation

_o=[E + KoGleo (25)

Thus, if E,G are constant, Ko should be designed as a constant matrix that

places all eigenvalues _,.o of [E + KoG] in (25) sufficiently deep in the left-half

plane. Since the pair (E,G) is, by construction, "completely observable," the

latter is a standard task (pole-assignment) in modern control theory, [16].

The case of non-constant E and/or G is treated in a similar manner; see [12;

p. 641].

The full-order (:-order) state-observer (23) can be replaced by any one

of a variety of reduced-order state-observers--with the expense of a
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somewhat more complicated mathematical structure, compared to (23). One

such observer, having the reduced-order (o-m), is described in [13; p. 487].

Composite State-Observers for Simultaneous Estimation of the S_stem-

State x=(x,,...,x,)and Distarbanee-State z=(z,,.--,zp) - Unlike the

command-state c(t), which can be estimated via (23) from direct real-time

measurements of the tracking command yo(t), the disturbance-state z(t) can

(typically) only be estimated from measurements of the outputs y_(t),...,y,(t)

of the system S being controlled, (i.e. one typically cannot directly measure

w(t) in (20)). If the equations of motion for the state x(O of S can be reliably

"linearized" about some nominal operating point (or operating condition) of

S, the states (x(t),z(t)) of both S and w(t) can be simultaneously estimated in

real-time by a (full-order) "composite state-observer" as follows.

Suppose the state x(t)=(x_(t),_(t),...,xn(t))of S is governed by the

known, linearized state-variable equations

SL._(t) = A(t)x + B(t)u(t)+ F(t)w(t) (26a,b)
"[y(t)=C(t)x

where {A(t),B(t),F(t),C(t)) are known matrices, and assume that an

appropriate disturbance state-model (20) has been developed. Then, by

incorporating (20) into (26) one obtains the following "composite

plant/disturbance state-model" (hereafter we omit the permissible argument

(t) on A, B, F, C, H, D to simplify notation)

o Jk } LOJ I,a-_)

By defining e=col.(x[z), the

compact notation

(27a)

(27b)

model (27) can be re-written in the more
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_= ,_+_u+& (28a)

y=O_ (28b)

.

where the meanings of ,_,/_,0, & are clear from comparison of (28) with (27).

A full-order [(n+p)th-order] state-observer for generating an accurate

composite-state estimate _=co/.(_le), between arrivals of the unknown a,(t)

impulses in (27a), is given by the continuous-time data-processing algorithm

[13; p. 431], [22]

_= AYe + JBu(t)-Ko[Y-_ ]. (29)

The composite-state estimation error _ = e-_ associated with (29) is

governed by the linear homogeneous equation

=[4 +1 oC] (30)

and thus the observer gain-matrix g7o in (29) should be designed so that

_;(t)--> o promptly, between arrivals of the _-impulses in (27a). The latter

task necessitates that the composite pair (,_,0) in (28) be "completely

observable," [a technical condition that is typically satisfied in industrial

applications but, strictly speaking, is no..._!tautomatically guaranteed, even if

both (A,C) and (D,H) are known to be, individually, completely observable].

The design of/_o is otherwise a standard task in modem control, [22]•

The state-observer algorithm (29) can easily be generalized to include: (i)

systems S whose vector of outputs Y(O in (20b) is a (linear) function of u(t)

and/or w(O of the form

y(t) = C(t)x + E,(t)u( t) + Gw(t) (31)

and/or, (ii) disturbance sources such that the

dynamic behavior of w(O depends linearly on the system state x(t) and control

u(t) as follows [compare with (20)]
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w(t) = H(t)z + L(t)x (32a)

= D(t)z + M(t)x + N(t)u(t)+ or(t) (32b)

The case (31) can arise when the sensors, used to measure the system

outputs y,(t), include "aceelerometers." The case (32) can arise from "state

dependent" disturbances. Generalizations such as (31), (32), including

additional "noise" terms, are addressed in [13; pp. 423, 424], [22], [23] and

[24].

In addition to (29), various forms of reduced-order, composite-state

observers for (28) can also be used to generate real-time estimates _(t),_.(t).

The details of one such observer are presented in [22]. When the

measurements of the pointing/tracking commands (y,._,(t),y,.,(t)) and/or the

system outputs y,(t) are corrupted with (additive) "sensor noise" the

corresponding state-observers (Kalman Filters) have exactly the same form as

(23), (29) with the exception that the observer gain-malriees (Ko,I_o) in (23),

(29), are then "optimally" determined by the (assumed known) noise statistics

and by certain auxiliary equations (RJccati differential equations) as defined

in Kalman Filtering Theory, [21].

In summary, when measurement noises are negligible, one can obtain

accurate, physically realizable, real-time estimates {_(t),_(t),_.(t)} of the three

state-vectors {x(t),c(t),z(t)} as needed for implementation of optimal

pointing/tracking controls (21) by using the command-state observer

algorithm (23) and the composite-state observer algorithm (29), provided the

state-equations for S are linearizable as in (26). If measurement noises

associated with yi.c(t),yi(t) are not negligible, the (Ko,.¢o) matrices in (23),

(29) should be determined by the formal procedures of Kalman Filtering

Theory.
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6.0 FORMULATION AND SOLUTION OF POINTING�TRACKING

CONTROL PROBLEMS IN THE EXTENDED (x, c, z) STATE-SPACE

According to the command/disturbance uncertainty accommodation

principle, and related arguments presented in Section 5.5, the design of high-

performance, precision pointing/tracking control systems should be based on

the real-time information embodied in the real-time values x(t), c(t), z(t) of the

three state-vectors x, c, z. That is, the

pointing/tracking control law (algorithm) u = u(?)

u(t) = _(X(t), c(t), z(t), t)

designer should

in the form

seek the

(33)

where observer-produced estimates _(t),_.(t),_(t) are used to implement (33).

There are essentially two methodologies for designing extended-state

pointin_tracking control laws of the type (33): (i) the optimal control method

analogous to that used by Kalman for the problem (2)-(5), and (ii) a more

fundamental and direct method involving linear algebra and basic linear

stabilization techniques. In this section we will outline the essential features

of both of those methodologies; further details may be found in [25], [26],

[271.

6.1 An E._ended-State

Pointing/TracMng Problem

Reformulation of Kalman 's Optimal

- Kalman's absolute optimal, physically un-

realizable, pointing/tracking problem (2)-(5) can be reformulated into a

physically realizable, slightly less-than-optimal, problem by introducing the x,

c, z state vectors, and the associated state models (2), (18), (20) with the

sparse, unknown impulse-sequences o(t),ju(t) ignored, [since there is no

rational, scientific way (only "gambling" ways) to account for such uncertain

a(t),l_(t) in this, or any other, optimization procedure]. For this purpose, note
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that the tracking error-vector e in (1),(3) can be rewritten in terms of (x, c, z)

as follows

Thus,

e= yc-y

=Gc-Cx

e= U:_; C-= [-C IG O]; :_= col.(x Icl z) (34)

Moreover, the plant, command and disturbance models (2), (18), (20) can be

combined into the one composite _ model

(_)- Oi_l o / (._)+
OlOID _l

y=[CIolo](_)

(35a)

(35b)

and, using (34), the error/control quadratic performance criterion J in (3) can

be rewritten in terms of _ as follows

s -c sc (36)

The control u(.) that minimizes (36) for the composite

plant/command/disturbance model (35) [with /40-0, _t)_=0] can now be

derived, without needing to know the future behavior of yc(t) and w(t), using

standard procedures of optimal control theory. This has been done in [25]

with the result that the "less-than-absolute optimal," physically realizable,

pointing/tracking control law (33), based on the extended (x,c,z) state-space,

is given by

Oo = -R-' (t) B r (t)[Kx (t)x + K= (t)c + K,=(t)z] (37)
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' ::=i̧

where the three gain-matrices (Kx,K=,K=) are determined by reverse-time

solution of the following, unilaterally-coupled matric differential equations

[25; p. 349]

I_xCt) = -KxA- ArK_+K_.BR-_BrK_-CrQC ;

/_=(t) = -K_E- ArK=+ K_BR-'BrK,=+ CrQG

I_=(t) = -K_FH- ArK=+ K_BR-1BrK. - K=D

x_(r_ = c_sc (38a)

; K_ (T)=-CrSG (38b)

; K,.(T)= O. (38e)

Since the sub-absolute optimal problem (35),(36) is the same as Kalman's

problem (2)-(5), with the exception that in solving (35),(36) the o(t), p(t)

impulses have been ignored, it is interesting to compare the structures of the

two control algorithms. Comparing (6a, b) with (37),(38a) it is clear that one

always obtains the equivalence

Kx(t) =-P(t) in (6a,b). (39)

Moreover, if in fact the sparse impulse-sequences o(t), p(t) in (35) are

following additionalactually zero, then it can be shown [28] that the

equivalence obtains

K=(t)c+K=(t)z--h(t) in (6a, c) (40)

Finally, still assuming o(t)-0, u(t)---0, it turns-out [25] that the extended

state-space counterpart 3 ° of the "optimal performance" expression J° in

(7a), corresponding to (36), (37), (38), is given by

3 ° = x r (to) K_(to)X(to) + c r (to) K¢(to)C(to) + 2x r (to) K,_ (t o)c(to)

+2[xr(to)X=(to)+cr(to)X=(to)] Z(to)+zr(to)X,(to)Z(to) (41)

where the additional matrices K=(t), Ko(t), K,(t) are determined by reverse-

time solution of other matric differential equations similar to (38); see [25;

Eq.(10)]. Note that, for fixed values of X(to), C(to), Z(to) and T, the "optimal"

performance 3o in (41) will always be _ (less optimal) than J° in (7a)
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when the o(t), p(t) impulses in (35) are not identically zero. In that case the

difference £ defined by

£=)°-J° (42)

is a direct measure of the pointing/tracking performance loss due to the

inability of the physically realizable, sub-absolute optimal control a_(t) in (37)

to "see" the forthcoming, future impulse arrivals in o(t),/_(t) . The practical

implementation of (37) will, of course, require use of observer-generated real-

time estimates _(t), _(t), £,(t) as developed in Section 5.5.

An experimental comparison of Kalman's "absolute optimal" performance

J° in (7a) and the physically realizable sub-absolute "optimal" performance

3° achieved using the extended-state optimal control design method (35-(38),

based on simulation studies of a particular example, is presented in [28]. For

the several cases studied there, it turns-out that the physically unrealizable

absolute optimal performance J° is about 10-20% "better" (i.e. lower) than

the physically realizable performance 2 °.

We will now describe an alternative and more fundamental method for

designing pointing/tracking control systems in the extended (x,c,z,) state-

space. This alternative method does no_.Atinvolve optimal control ideas, and

the introduction of a (potentially) "contrived" performance criterion Jr, but

rather is based on simple linear-algebraic concepts and linear-stabilization

techniques.

6.2 An Algebraic-Stabili_ation Method for Pointing/Tracking Control

Design in the Extended (x,e,_) State-Space - The optimal control method

outlined in Section 6.1 is an effective control design methodology because of

the wide-spread popularity of Linear/Quadratic-type methods among today's
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younger control designers and the wide-availability of a variety of (nearly

automatic) CAD programs that are specifically tailored for executing

Linear/Quadratic design procedures. On the other hand, such optimal control

methods tend to relegate all conventional control design considerations (e.g.

"setting-time," % overshoot, etc.) to the background and foens attention on

mathematically minimizing the performance functional 3". This introduces an

extra layer of abstractions and mathematical complexities that can obscure the

basic, underlying scientific features of the fundamental control problem being

addressed. In this Section we will outline an alternative pointing/tracking

control design method, for the extended (x,c,z) state-space, that is purely

linear-algebraic and linear-stabiliT,'ation in nature and that, like classical

control methods, focuses on the essential, underlying features of

poinling/traeking problems. Further details of this algebraic-stabilization

method may be found in [26], [27 ], [28].

The algebraic-stabilization method of pointing/tracking control design for

(2), (18), (20) [in (x,c,z)-space] begins by observing that the tracking error-

vector e(t)=yc(t)-y(t) in (34) can become identically zero only if, for any

arbitrarily given command-state

vector x such that

Cx = Gc .

c= (q,...,co) , there exists a system-state

(43)

Satisfaction of the linear algebraic equation (43) is guaranteed if, and only if

rank[ClO]=ra.k[C] (44)

which implies that G in (18) must aUowthe decomposition (factodzation)

G = Ce , for some (perhapsnon- unique) matrix O .(45)

The fundamental requirement (44) is referred to as the "trackability

condition," [26; Thin. 2]. We hereafter assume (44) is satisfied and, for
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i;

simplicity, that A,B,F,C,H,D

time-varying case. Next, we re-write

e = Gc - Cx

= C(Oc - x)

It is clear fi_om (46)

pointing and tracking,

are all constant; see [26] for the more general

e as follows

e=C% ; e_=(Oc-x)= the "servo-state" vector, (46)

that the basic requirement for achieving precision

e(t)_zero, is to control the auxiliary "servo-state"

vector e= so that e=(t) is promptly regulated t_.q,oand thereafter remains in (or

very near), some subs'pace of the null-space .9_c[c] of the given matrix C,

while remaining acceptably bounded, in norm, at all times. Recall that e. = 0

is always a member of.g¢'[C] ; however, other values of e,, _ o may also lie in

the linear space of vectors that comprises .q_c[C], depending on the rank of

C.

The state equation governing the motions of e,,(t) is readily computed to

be

d., = Ae_, +(OE- A _c-Bu-Fw(t)+Ol_(t) (47)

Thus, the control u(.) in (47) should be designed to promptly regulate

e,,--_ some subs'pace of 9q" [C], between successive arrivals of the unknown

impulses in o(t), #(t), while keeping le=(t)[[ acceptably bounded for all t.

For this purpose, we will seek u(.) in the idealized, linear, extended-state

feedbacldfeedforward form [26; eq. 36]

u = S, x + S: c + Fz (48)

where the three constant gain-matrices S_, S:, F are to be designed as

explained below.

Substitution of (48) into (47) yields the "closed-loop" equation of motion

for e=(t) as
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_..=(A+BSI)e,,+(OE-AO-BSIO-BS_)c-(BF+FH)z (49)

Thus, to achieveprompt regulationof e_,(t)--->SNc,SNc _csome subspace of

.qV[C], one should:

(i) Design S, so that all solutions g_,(t) of t_ = (A+BSl)g_, are strongly

asymptotically stable to some S,,c _c .or" [C] and remain norm-

bounded, at an acceptable level, for all t ; see [29] for the theory of

"subspace stab'll/zation." (50)

(ii) Design S_ so that the vector (0E - A e- BS1O- BS2) e always lies in

SNc ----94" [C], for an___.yc. (51)

(iii) Design F so that the vector (BF+FH)z always lies in SNc c_ 9V" [C],

for _ z. (52)

(iv)Re-check satisfactionoftheboundedness conditionin(0 and revise

choice of SNc and/or designs of SI,S_,F as needed; see [27]. (53)

These design requirements necessitate the trial-and-error choice of a suitable

subspace S_,c _c .N[C] on which to "land" e=(t), but otherwise involve only

linear-algebraic considerations that can be achieved by straightforward,

systematic procedures as explained in [26], [27], [29].

An overall block-diagram showing the control (48) implemented on

the system (2) [using full-order command-state and composite

system/disturbance state-observers (23), (29)] is shown in generic format in

Figure 8. A specific 2rid-order example which iUustmtes this algebraic-

stabilization design method is worked-out in detail in [26; p. 31].

7.0 SUMMAR Y AND CONCLUSIONS -

In this Chapter we have given a general description of a broad class of

multi-input/multi-output pointing and tracking control problems encountered

in industrialapplications. The dynamic characteristicsof the uncertain
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i

commands and disturbances associated with those pointing/tracking problems

have been analyzed from the information-theoretic viewpoint and some

fundamental pointing/tracking performance limitations induced by those

uncertainties have been identified. It has further been shown that the solution

of a theoretical "absolute optimal" pointing/tracking control problem without

such uncertainties, due to Kalman, can be used to quantify and evaluate

numerically the extent of those uncertainty-related performance limitations, in

any given application.

A relatively new form of mathematical model ("waveform-moder'), which

can simultaneously represent trend behavior and uncertainty in realistic

pointing/Iraeking commands and disturbances, has been used to obtain a

command state-vector c(O and disturbance state-vector z(t), and associated

state=variable models, that can effectively represent the characteristic

dynamic time-behavior of uncertain commands and disturbances in

pointing/tracking problems. A fundamental principle, called the

"command/disturbance uncertainty accommodation principle," has been used

to assert that an optimal, physically realizable, rational control law

(algorithm) for a pointing/tracking control problem must be based on the real-

time values of the current system-state x(t), the current command-state c(t)

and the current disturbance-state z(t). Two different control design

methodologies, a variation of Kalman's optimal control method and a purely

linear-algebraic method, for deriving such pointing/tracking controllers have

been outlined.

The fundamental principles and performance limitation ideas presented

here, together with the extended-state (x,c,z) problem formulations and

associated control design methodologies in Section 6.0, should enable the
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attainment of maximum, physically realizable performance levels in a broad

class of precision pointing/tracking control problems with uncertain

commands and disturbances.

The ideas presented here can be readily adapted to the design of

(discrete-time) pointing/tracking control systems by following the procedures

given in [14]. It is remarked that the use of a digital control system in

pointing and tracking problems introduces an additional degree of

performance limitation owing to the imposition of a specified sequence of

discrete times tj at which the (otherwise "open-loop") discrete control actions

are allowed to be updated. An effective technique for mitigating that

additional performance limitation is described in [14; p. 311], [30].
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